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Effect of spark plasma sintering temperature
on the structure and properties of alumina ceramics
containing barium hexaaluminate
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R. R. Khabirov, A. A. Miller, M. Yu. Agafonov

Novosibirsk State Technical University
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Abstract. Alumina-based composite ceramics containing barium hexaaluminate are promising for various industrial applications,
including the fabrication of replaceable cutting inserts. However, reports on such materials produced by spark plasma sintering
(SPS) are scarce. This study aimed to evaluate the influence of sintering temperature on the structure and properties of alumina
ceramics containing barium hexaaluminate. The materials were fabricated from highly dispersed Al,O, and BaO powders
by co-dispersion in an alcohol medium, followed by drying and spark plasma sintering at 1500, 1550, and 1600 °C. X-ray diffrac-
tion, scanning electron microscopy, and hydrostatic weighing were used to determine phase composition, microstructure, apparent
density, and open porosity. Vickers hardness and fracture toughness were evaluated by indentation. The formation of a-Al,O, and
Ba, ;Al; O, ,, phases was confirmed. The relative density of alumina ceramics without additive reached 99.72 + 0.3 %, while that
of ceramics containing barium hexaaluminate was 92.45 £ 0.5 %. The average Al,O, grain size decreased from 4.27 + 1.80 pm
(without additive) to 1.49 + 0.80, 1.89 + 0.85, and 1.60 =+ 0.63 pum at sintering temperatures of 1500, 1550, and 1600 °C, respec-
tively. The barium hexaaluminate plates grew with increasing temperature, from 2.45 + 0.22 pm at 1500 °C to 5.23 £+ 0.46 pum at
1600 °C. The maximum fracture toughness (K, = 5.00 + 0.10 MPa-m'?) was obtained for the material containing barium hexaalu-
minate sintered at 1550 °C, which also exhibited a hardness of 2070 + 43 HV,.
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BnnsHne TeMnepaTypbl 31€KTPOUCKPOBOIO CreKaHus
Ha CTPYKTYPY U CBOMCTBA allOMOOKCUAHOMN KEPaMUKM,
copepXalien rekcaantoMmuHat 6apus

K. A. Aurponosa®, H. 10. YepkacoBa, H. C. Anekcangposa,
P. P. Xa6upos, A. A. Munnep, M. 10. Aradponos

HoBocudupckuii rocy1apcTBeHHbIH TeXHUYECKUH YHHBEPCHTET
Poccust, 630073, . HoBocubupck, np-t Kapna Mapkca, 20

&) antropova.2017@stud.nstu.ru

AHHOTauMH. Kommosuimonnas KE€paMHKa Ha OCHOBC OKCH/Ia aJIFOMUHUs, COLACPIKalllas r€KCaaltoMuHaT 6ap1/15{, SABJIIACTCS HepCHeKTPIBHOﬁ

JUTSL TIPUMEHEHNUS B PA3IIMIHBIX 00JIACTAX MIPOMBIIUICHHOCTH, B TOM UHCIIE JUIS M3TOTOBIEHHS CMEHHBIX PEXYIIUX IUIacTHH. Pador,
B KOTOPBIX OTMEUEHHBIE MaTepHaibl MOTYyUYEHBI JIEKTPOUCKPOBBIM CIIEKaHUEM, NPAaKTUUeCKH He Habmomaercs. Llenbio maHHOTO
HCCIIE/I0BAHMUS SIBISIACH OLIEHKA BIIMSIHUSI TEMIIEPATyPBI JIEKTPOMCKPOBOTO CIIEKaHUsI Ha CTPYKTYPY M CBOIMCTBA KepaMUKH Ha OCHOBE
OKCHJIa aJTIOMHUHUSI, COfleprKalell rekcaamomMuHat Oapus. Mccnemyemble MaTepralisl OTy9IeHbl 13 BHICOKOANCIICPCHBIX TTOPOIIKOB
OKCHJIa AIFOMHUHMS M OKCHIA Oapys MyTeM COBMECTHOTO JHCIEPTHPOBAHHS CIUPTOBLIX CYCIEH3HMH, UX CYHIKH M MOCIEAYIOIIETO
3JICKTPOUCKPOBOTO CHIEKaHus Tpu Temmneparypax (£,) 1500, 1550 u 1600 °C. TIposogunu peHTreHo(a3oBblil aHaIN3, HCCIIEI0BAHMIS
CTPYKTYPBI METOIOM PAacTPOBOH IMEKTPOHHOH MHUKPOCKOINH, OIEHKY Ka)KyIIeHCs IIIOTHOCTH M OTKPBITOH IMOPHCTOCTH METOIOM
THAPOCTATUYECKOTO B3BemnBaHus. OLEHNBAIN TBEPAOCTh 10 BHKKepCy M TPEIHHOCTONKOCTh METOOM MHASHTHPOBAHUS. 3a(UK-
cuposano popmuposanue das a-AlL,O, u BaO,83A11 10}733- OTHOCHTENBHAS [IOTHOCTE OT TCOPETHYCCKON allfOMOOKCHIHON Kepa-
MHKH 0e3 m06aBok coctaBisier 99,72 + 0,3 %, npu ¢popmMupoBaHHN TekcaamomMuHara Oapust — 92,45 + 0,5 %. Cpenuuii pasmep
3epeH OKCH[A alllOMMHMS B Marepuayie 0e3 100aBku HaxomuTcs B auanaszoHe 4,27 + 1,80 mMxm, a npu popmupoBanuu 15 mac. %
rekcaanmomunara 6apus — 1,49 + 0,80, 1,89 + 0,85 u 1,60 + 0,63 MM mpu t,= 1500, 1550 u 1600 °C coorsercTBenHo. Pasmepst
TUIACTHH TeKCAalfOMHUHATa Oapus ¢ POCTOM TEMIEPATYphl CrieKanus yBemuumbatorcs. [Ipu ¢ = 1500 °C ux mmuHa cocTaBiseT
2,45 £0,22 Mxm, a npu £, = 1600 °C — 5,23 £ 0,46 mxM. Haubonee Bricokoe 3HauYCHHE KPUTHYECKOTO KOI((HIMEHTa HHTEHCHB-
HocTu Hanpsokeruit (5,00 £ 0,10 MITa-m'?) 3adukcupoBaHo uis MaTepuala, COIEPHKAILETO TEKCAAIFOMUHAT 0apusl U CIIEYEHHOTO

npu ¢, = 1550 °C, TBepnoCTh Takoro Marepuana cocrauser 2070 £ 43 HV,.

KnioueBbie c/ioBa: SIEKTPOMCKPOBOE CIICKaHHE, OKCHI AJIFOMHHHs, TrekcaaaroMuHar Oapus, (azoobpasoBaHue, CTPYKTYypa,
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Introduction

Research on alumina and alumina—zirconia cera-
mics continues to expand. Their combination of high
mechanical performance and low weight, along with
other advantageous properties, has driven adoption
across medical [1], defence [2], and tooling [3] sec-
tors. As performance requirements tighten, improving
the service properties of oxide ceramics has become
essential; in particular, boosting resistance to crack
propagation remains a central challenge [4].

In modern materials science, an active approach is
toreinforce alumina ceramics with alkali, alkaline-earth,
and rare-earth metal hexaaluminates (MeAl,,0,,, mag-
netoplumbite; MeAl, O ¢, B-Al,0,)) [5]. In the struc-

ture of such materials, hexaaluminate grains are flat-
tened hexagonal prisms that contribute to improved
fracture toughness through various mechanisms [6-8].
The most frequently reported mechanisms include
crack deflection, grain pull-out, crystal fracture in
transverse — and less often longitudinal — directions,
crack bridging, and crack branching. It has been noted
that the overall material performance is significantly
affected by the type of initial additive used for hexaalu-
minate formation [9] and on crystal size and volume
fraction [6], which determine the strength of their
bonding with the matrix grains and the mechanisms
contributing to fracture toughness enhancement.

Numerous studies have reported that variations in
hexaaluminate content lead to changes in key mate-
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rial properties — such as density, porosity, hardness,
strength, and fracture toughness. For instance, when
up to 10 wt. % CaAl,,0,, is formed in the struc-
ture of Al,O,~ZrO, ceramics, the fracture toughness
increases from 5.8 to 6.3 MPa-m!?2. Further increase
in calcium hexaaluminate content results in a decrease
in fracture toughness to 5.5 MPa-m'2, accompanied
by reduced density and hardness [10]. A similar rela-
tionship was observed in [11], where the formation
of 2.8 vol. % LaAl O, led to an increase in fracture
toughness by approximately 1 MPa-m!?, whereas
higher LaAl, O , content reduced it to 2.7 MPa-m'2.

Notably, that hexaaluminates themselves exhibit
a wide range of functional properties, including con-
siderable catalytic activity and stability [12], lumines-
cence [13], electrical conductivity [14], among others.
Therefore, when selecting a hexaaluminate-forming
additive for alumina ceramics, its choice should be
guided by the intended application area. For example,
calcium hexaaluminate is widely used in the produc-
tion of medical ceramics [1]. The formation of barium
hexaaluminate enhances thermal shock resistance, and
compositions based on it remain among the least stu-
died [8]. The relevance of researching the Al,O,-BaO
system, along with its thermodynamic characteristics
and the thermal stability of different phases, is discussed
in the article [15]. It has also been reported that the ba-
rium hexaaluminate phase is the most thermally stable.

Barium hexaaluminate belongs to the B-AlO,
structural family and forms as nonstoichiometric
phases such as Ba,; Al 0,5, Ba,j;Al) 3305, 5,
and Ba, . Al,,O, ;, [5; 16]. Due to its plate-like mor-
phology, it also contributes to improving the fracture
toughness of alumina ceramics. In [8] 20.89 vol. %
Ba,,Al,,O,,,; in an Al,O,~ZrO, matrix increased
fracture toughness by approximately 25 % relative
to the additive-free material. Further increase in con-
tent to 41.38 vol. % yielded a smaller additional gain
in toughness but markedly reduced hardness, strength,
and density. Similar plate-mediated toughening has
been reported for Al,O, with up to 10 vol. % ZrO, [17],
with effectiveness of toughness enhancement tied
to the degree of material densification.

This study examines the effect of spark plasma sin-
tering (SPS) parameters on the structure and proper-
ties of alumina ceramics with barium oxide additive.
As noted in [3], spark plasma sintering enables the fab-
rication of ceramic workpieces for cutting-tool produc-
tion. Therefore, the present work not only contributes
to the body of knowledge on the Al,O,~BaO system
but may also hold practical significance for develop-
ments in the tooling industry.
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Materials and methods

High-purity alumina powder (99 %, average partic-
le size 140 + 50 nm, China) and barium oxide powder
(99 %, average particle size 2.7 + 0.6 um, Russia; pre-
pared in accordance with TU 6-09-5397-88) were used
as starting materials. Alcohol suspensions were pre-
pared using isopropyl alcohol (50 vol. %) as a disper-
sion medium for mixing the initial powders. The BaO
content was set to 3 wt. % to form approximately
15 wt. % barium hexaaluminate. A relatively high bar-
ium hexaaluminate fraction was chosen to clearly eva-
luate its effect on the properties of the studied materials.

Dispersion was carried out in a ball mill for 10 h
with periodic stops to cool the suspension. The rotation
speed was 90 rpm. The drum of the mill was lined with
polypropylene, and alumina grinding bodies 3 mm in
diameter were used.

After dispersion, the powders were dried and con-
solidated by spark plasma sintering on an MS-1 unit
at sintering temperatures (Z,) of 15001600 °C, under
a pressure of 17 MPa, with a 5-minute holding time
at maximum temperature. To prevent direct interac-
tion between the powder and the tooling surfaces, gra-
phite paper was placed between the powder and the die
walls, as well as between the powder and the punch
faces. Heating was provided by pulsed direct current
passing through the graphite tooling. The temperature
was measured using a pyrometer positioned in a side
hole of the die assembly.

The apparent density and open porosity of the sin-
tered materials were determined by the hydrostatic
weighing method.

The apparent density was calculated as the ratio
of the dry sample mass to the difference between
the saturated and immersed masses:

M
_ Tdry [g/cm3],

papp - Msat - M

liq

where M, is the mass of the dry sample, g; M__ is

sat

the mass of the sample saturated with liquid, g; M,
the mass of the sample immersed in liquid, g.

iq 18

The relative density was calculated as

P = Par 100 %,

theor

The theoretical density was determined using
the literature values of the X-ray densities of the sin-
tered components according to the formula:

-1
Prbeor = (ﬂ + m—] 100 % [g/em?],
pi pn
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where p; and p, are the theoretical densities of the indi-
vidual components, g/cm®; m, and m, are their mass
fractions in the composite, %.

The open porosity (P ) was calculated as
M, —M
P, =—S_—dv 100 %.

sat — " liq

X-ray diffraction (XRD) analysis was performed
using a PowDix600 diffractometer (ADWIN Smart
Factory, Republic of Belarus) with CuK,,  radiation.
The phases were identified using the ICDD PDF-4+
database. Polished sections for microstructural analy-
sis were prepared using standard procedures, including
grinding and polishing with diamond wheels and suspen-
sions of various fineness. To reveal the grain structure,
thermal etching was performed at a temperature 200 °C
below the sintering temperature. Microstructural ana-
lysis was carried out using an EVO 50 scanning elect-
ron microscope (Carl Zeiss, Germany) equipped with an
X-ray microanalysis attachment. Prior to examination,
the polished sections were coated with a 40-nm cop-
per layer to improve conductivity. Secondary electron
detection was used for imaging. Grain sizes were mea-
sured using the JMicroVision 1.3.4 software. The alu-
mina grain size was determined as the equivalent-circle
diameter corresponding to the grain projection area in
the microstructure image. For barium hexaaluminate
grains, their length and width were measured, and
the aspect ratio was calculated. At least 300 alumina
grains and 100 barium hexaaluminate grains were ana-
lyzed for each composition.

The Vickers hardness and fracture toughness were
evaluated by the indentation method under a 2-kg
load using an SV-50A Vickers hardness tester (China).
The fracture toughness, K| (critical stress intensity fac-
tor), was calculated using the following equation [18]:

[MPa-m'?],

-0.5 -0.4 0.5
K= 0.048(5] (HVJ M

a ﬁ D

where HV is the hardness, GPa; a is the half-diagonal
of the indentation, pm; ¢ is the length of the radial
crack measured from the indentation center, um; @ =3
is the constant.

The Young’s modulus (£) of the composite mate-
rials was estimated by the rule of mixtures:

mi m. B
E=|—+—L| 100 % [GPa],
E E

J

where E, and E; are the Young’s moduli of AlO,
(397 GPa) and B‘él().%AlUO”_33 (226 GPa), respectively;

m, and m; are their mass fractions (%). The modulus
values were taken from the literature [19].

Results and discussion

Experimental materials were sintered from start-
ing mixtures of alumina and barium oxide. The sin-
tering temperature (7,) was 1500, 1550, and 1600 °C.
As a reference, an additive-free alumina ceramics was
prepared.

X-ray diffraction patterns of the sintered materials
are shown in Fig. 1. Regardless of the sintering tem-
perature, the materials with BaO in the starting mix-
ture display, in addition to a-Al,O,, diffraction peaks

2732
of Ba, ,Al,,O No other barium-containing phases
were detected.

17.33°

The apparent density and open porosity of the sin-
tered materials were evaluated; the results are sum-
marized in Table 1. The highest relative density
(with respect to the theoretical density) was obtained
for the additive-free alumina ceramics. Formation
of barium hexaaluminate in the composite led
to a decrease in relative density and an increase in
open porosity, which is consistent with prior reports
on hexaaluminate formation in alumina matrix [5; 11].
With increasing sintering temperature, density and
porosity changed nonlinearly.

Microstructural studies were performed by scan-
ning electron microscopy (SEM). In the SEM micro-

@ a-ALO,

B Bay Al 0553
A Atrifact

v Kﬁ

Intensity

20, deg

Fig. 1. X-ray patterns of the sintered materials

1 — alumina ceramics without additives, sintered at z, = 1500 °C;
2-4 — ceramics of the composition AL,O; + Ba, ., Al,,O,, ,; ceramics,

sintered at 7, = 1500 (2), 1550 (3), and 1600 (4) °C

Puc. 1. PentrenoBckue TudpakTorpaMmel
CIICYCHHBIX MCCIIEAYEMBIX MaTEPHAIIOB
1 — aIIOMOOKCHIHAs KepamuKa 0e3 100aBoK,
cnedennas npu £, = 1500 °C;
2-4 — xepamuxka cocrasa AL O, + Ba, Al O, .,
credennas ipu ¢, = 1500 (2), 1550 (3) u 1600 (4) °C
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Table 1. Apparent density and open porosity of the sintered materials

Tabamya 1. Kaxymascsi IJ10THOCTb M OTKPBITAsi HOPUCTOCTD ClleYeHHbIX MATEPUAJIOB

’ theoretical ’
ALO, 1500 3.98 £0.02 99.72+0.3 0.26 £0.07
1500 3.70+0.04 9245+0.5 4.75+0.09
ALO, + Ba, Al O, 1550 3.86+0.03 9641404 | 1.76+0.08
1600 3.86+0.03 96.35+0.4 2.08 £0.08

graphs (Fig. 2), the darker equiaxed grains correspond
to the low-Z alumina phase, whereas the brighter elon-
gated grains belong to the Ba-rich phase. SEM-EDS
spot analyses conducted on the elongated grains con-
firmed the presence of Ba, Al, and O, identifying them
as barium hexaaluminate (Fig. 2, e). Grains of both

phases are distributed fairly uniformly, though local
clusters of bright elongated grains are occasionally
observed.

A detailed quantitative analysis of the structural cons-
tituents was performed, and the results are presented
in Fig. 3 and Table 2. The average grain size of alu-

z
g
[
=
&
0 1 2 3

i
1 1
4 5

6 7

(o]

E, keV

Fig. 2. Microstructure of the sintered materials

a — alumina ceramics without additives; b—d — ceramics containing barium hexaaluminate sintered at z_, °C — 1500 (b), 1550 (¢), 1600 (d);
e — results of micro-X-ray spectral analysis obtained from region I marked in Fig. 2, ¢

Puc. 2. CtpykTypa CIIeueHHBIX MaTepPHaIOB

@ — aJIIOMOOKCH/IHas KepamuKa 0e3 100aBok; b—d — conepskaiias rekcaamomunar 6apus; £, °C — 1500 (b), 1550 (c), 1600 (d);
€ — pe3yJIbTaThl MUKPOPEHTICHOCIIEKTPAIIBHOTO aHaJIN3a, MOJTyYeHHbIE ¢ 001acTu 1, BbIICICHHOM Ha puc. 2, ¢
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mina in the additive-free material was 4.27 = 1.80 um.
The alumina powder used in this study was highly dis-
persed, which provided high sinterability. In addition,
the SPS technique and the presence of barium oxide
contributed to the intensification of the sintering pro-
cess. In materials containing BaO, the alumina grains
were significantly smaller. For instance, under identi-
cal sintering conditions at 7, = 1500 °C, the alumina
grain size decreased by about 65 % in the material
containing barium hexaaluminate. This effect can be
attributed to Ba segregation along alumina grain boun-
daries, which inhibits their migration and growth [20].
Furthermore, the growth of hexaaluminate grains
of any chemical composition is usually accompanied
by the consumption of alumina grains, which also leads

70

60 -

50

40 |

30

Content, %

20

10

Grain size, pm
Fig. 3. Grain size distribution of alumina in the sintered materials
Bl - ALO,, 1500 °C;

M- ALO, +Ba, Al 0, ;. 1500 :C;
- ALO, +Ba, Al 0, ., 1550 OC;
- ALO, +Ba Al 0, 5, 1600 °C

Puc. 3. Pactipenienienie pa3MepoB 3epeH OKCHIA aTFOMUHUS
B CIICYCHHBIX MaTephanax

W ALO,, 1500 °C;

to their size reduction — a behavior consistent with pre-
viously reported findings [21; 22].

The alumina ceramics exhibited the widest grain
size distribution, whereas in the material containing
barium hexaaluminate and sintered at 7 = 1600 °C,
the distribution of Al,O; grains was the narrowest,
with a maximum grain size not exceeding 4 pm.
It was also observed that the barium hexaaluminate
plates increased in size with rising sintering tem-
perature. At ¢ = 1600 °C, both the length and width
of the hexaaluminate plates increased. The aspect ratio
of the barium hexaaluminate grains changed nonlin-
early, reaching its minimum value at 7, = 1550 °C. This
indicates that at the maximum sintering temperature,
the most intensive growth of barium hexaaluminate
plates occurs, accompanied by alumina grain con-
sumption, which ultimately results in smaller alumina
grains. Therefore, at 7, = 1600 °C, the decrease in alu-
mina grain size is mainly associated with their partici-
pation in barium hexaaluminate formation rather than
Ba segregation along grain boundaries.

The observed grain-structure features correlate
with the changes in density and porosity of the studied
materials. It was established that pores in the compos-
ite ceramics are predominantly concentrated in regions
where barium hexaaluminate grains accumulate (high-
lighted by an oval in Fig. 2, b). Hence, the presence
of pores is associated with the loose packing of plate-
like grains, which explains the pronounced decrease
in density and increase in porosity upon BaO addi-
tion in the materials sintered at 7, = 1500 °C. Further
temperature increase promoted alumina grain growth.
At t =1550 °C, the average Al,O; grain size reached
approximately 1.89 + 0.85 pum. The coarsening of alu-
mina grains led to a reduction in open porosity and an
increase in relative density. At this temperature, alumina
grain growth likely inhibited the elongation of bar-
ium hexaaluminate plates. However, at 7, = 1600 °C,
the growth of barium hexaaluminate plates dominated,

=:ﬁtgj igzzzﬁ}iigi:: 12(5)8 og ?esulting in longer plates, smaller alumina grains, and
- ALO, + Bay;Al, O, ;, 1600 °C increased porosity.
Table 2. Grain sizes of the sintered materials
Tabnmya 2. Pazmepnl 3epeH cie4eHHBIX MaTepHaJIoB
. Sintering v ALD Ba,Al O, 5, grains
Material temperature, G oy 29 ] ]
°oC gram S1ze, |um Length, pm Width, pm Aspect ratio
AlO, 1500 427+1.80 - - -
1500 1.49+0.80 245+0.22 0.57+0.05 1.0:4.3
ALO,+ Ba, ;Al,,0,, 1550 1.89 +0.85 3.38+£0.21 0.93 +£0.04 1.0:3.6
1600 1.60 £ 0.63 5.23+0.46 1.20+£0.06 1.0:4.4
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Plate-like grains in the microstructure can signifi-
cantly influence the mechanical properties of the mate-
rial [19]. The results of Vickers hardness and fracture
toughness measurements are summarized in Table 3.
The materials containing barium hexaaluminate exhi-
bited higher hardness compared with the additive-free
alumina ceramics. For oxide ceramics, the incorpora-
tion of hexaaluminates more commonly results in hard-
ness degradation [9—11]; in this case, however, the hard-
ness increase is attributed to the substantial refinement
of alumina grains. An improvement in fracture tough-
ness was also observed in alumina ceramics contain-
ing barium hexaaluminate. The highest K| value was
recorded for the material sintered at 7, = 1550 °C. It is
likely that this composition provides the most favo-
rable combination of porosity and grain sizes of both
alumina and barium hexaaluminate.

Fig. 4 shows a typical Vickers indentation with
radial cracks emerging from the indentation diagonals

and a magnified view of a crack propagating through
the Al,0,-BaAl,,0,, composite. The measured crack
lengths, taken from the indentation center to the crack
tip, correlate with the calculated K| value. In the addi-
tive-free alumina, the average crack length reaches
~80 um, whereas in the composite ceramics it ranges
from 50 to 55 um, with the maximum length not
exceeding 65 pum.

Detailed examination of the crack path (Fig. 4, b)
revealed intergranular fracture along alumina grain
boundaries and transgranular fracture of barium
hexaaluminate plates in both transverse (/) and longi-
tudinal (2) sections. Crack propagation was further
accompanied by deflection at plate interfaces and
the formation of crack bridging (3).

Conclusions

1. Regardless of the sintering temperature, XRD
analysis of materials containing barium oxide in

Table 3. Hardness and fracture toughness of the investigated materials

Tabaunya 3. TBepaocTh H TPEHIUHOCTOHKOCTDL HCCIeyeMbIX MATePHAJI0OB

Material Sintering Hardness, Fracture toughness,
temperature, °C HV, MPa-m'”?
AlO, 1500 1990 + 71 4.65+0.14
1500 2085 + 33 4.85+0.08
AlO, + Ba ;Al O, 1, 1550 2070 + 43 5.00£0.10
1600 2120 + 67 4.50+0.18

Fig. 4. Typical indentation (a) and propagating crack (b) in the investigated materials containing barium hexaaluminate

Numbers indicate the toughening mechanisms: 1 — plate fracture in the transverse direction;
2 — in the longitudinal direction with subsequent crack path deflection; 3 — crack bridging
The white arrow indicates the direction of crack propagation

Puc. 4. Tunn4HbIA CHIMOK OTIIeYaTKa (@) ¥ pacipocTpaHstomieiicss Tpeuns! (b) B nccneyeMpIx MaTepraax,
Cofiep KaIIX reKCaaTIOMHIHAT OapHs

Ludppamu 0603Ha4ECHBI MEXaHH3MBI MOBBILICHHS TPEIIMHOCTORKOCTH: ] — IIepepe3aHne MIaCTUHBI B IIONIEPEYHOM HAIPaBICHUH;
2 — B IIPOJIOJIBHOM HAIPABJICHUH C HOCIICAYIOUMM OTKIOHEHHEM TPACKTOPUH PACIIPOCTPAHEHUS;
3 — popMupOBaHHE MOCTHKOB
Bernoii crpenkoii mokasaHO HapaBIEHUE PACIIPOCTPAHEHUS TPEIIHBI
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the starting mixture revealed, in addition to a-AlO,,
the presence of Ba ,Al O, ,; reflections.

2. The formation of barium hexaaluminate leads
to a decrease in relative density and an increase in open
porosity. With rising sintering temperature, density
and porosity change non-uniformly due to the simulta-
neous growth and loose packing of plate-like barium-
hexaaluminate grains and variation in alumina grain
size.

0.83 17.33

3. The size of barium-hexaaluminate plates increa-
ses with sintering temperature: their average length
rises from 2.45 £ 0.22 pum at 1500 °Ct0 5.23 = 0.46 um
at 1600 °C.

4. The formation of barium hexaaluminate in
the ceramic microstructure causes a reduction of alu-
mina grain size by approximately 65 % under identical
sintering conditions at £ = 1500 °C.

5.The highest fracture toughness (K =5.00+
+0.10 MPa-m'?) was obtained for the material
containing barium hexaaluminate and sintered at
t,= 1550 °C. The corresponding Vickers hardness was
2070 £ 43 HV,.
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