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Аннотация. В работе рассмотрено влияние добавок порошков Si, Al, Cu и Cr к стехиометрическому составу шихты 

3Ti–Si–2C (ат. %) при получении МАХ-фазы Ti3SiC2 в режиме самораспространяющегося высокотемпературного синтеза 
(СВС) на воздухе в засыпке из песка без применения закрытого реактора и специальной атмосферы или вакуума. Показано 
влияние частичной или полной замены элементных порошков шихты Ti и Si на TiSi2 на выход Ti3SiC2 . Проведен анализ 
микроструктуры полученных СВС-продуктов с помощью растрового электронного микроскопа с приставкой для энергоди-
сперсионной спектрометрии. Исследованы качественный и количественный фазовые составы порошковых СВС-продуктов 
с помощью рентгеновского дифрактометра. Установлено, что добавка 0,1 моль порошка кремния к стехиометрическому 
составу шихты увеличивает количество MAX-фазы Ti3SiC2 в продукте до 70 % от объема. Введение 0,1 моль Al-порошка 
в исходную шихту приводит к уменьшению количества Ti3SiC2 до 39 % от объема и появлению новой фазы TiAl. При этом 
совместный избыток кремния вместе с добавкой 0,1 моль Al в системе 3Ti–1,25Si–2C + 0,1Al существенно повышают содер-
жание Ti3SiC2 до ⁓89 об. %. Установлено, что при синтезе в системе TiSi2–C в продуктах реакции доля МАХ-фазы умень-
шается, а количество побочных фаз возрастает. Максимальное содержание Ti3SiC2 в продукте при синтезе в системе TiSi2–C 
достигает 56 % от общего объема. При увеличении количества TiSi2 до полной замены элементного кремния в исходной 
шихте 2,5Ti–0,5TiSi2–2C доля МАХ-фазы Ti3SiС2 в продукте падает до 20 %.  

Ключевые слова: самораспространяющийся высокотемпературный синтез (СВС), безреакторный синтез, MAX-фаза Ti3SiC2 , 
порошки, структура, рентгенофазовый анализ
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ВведениеВведение
МАХ-фаза карбосилицида титана (Ti3SiC2 ) явля-

ется альтернативным и относительно новым соеди-
нением, которое может в дальнейшем заменить тра-
диционную керамику, так как обладает уникальным 
сочетанием керамических и металлических свойств, 
таких как стойкость к окислению, высокие тепло- 
и  электропроводность, стойкость к термоударам, 
пластичность при высоких температурах, жаростой-
кость, низкие показатели плотности и хорошая обра-
батываемость механическими способами [1; 2]. 

Многие исследователи проводят синтез с исполь-
зованием дорогостоящего оборудования, долговре-
менной выдержки в печах и защитных атмосфер, что 
значительно затрудняет и удорожает метод получе-
ния МАХ-фаз [3–6]. Высокоэкзотермичный и эконо-
мичный процесс самораспространяющегося высо-
котемпературного синтеза  (СВС) порошковых шихт 
значительно упрощает технологию получения МАХ-
фаз, не требует специального оборудования, и сам 
синтез протекает значительно быстрее, чем спекание 

в печах [7; 8]. Недавно был предложен новый простой 
способ получения МАХ-керметов пропиткой распла-
вами металлов пористого каркаса Ti3SiC2 , синтези-
рованного методом СВС на воздухе  [9]. В процессе 
синтеза Ti3SiC2 температура продукта реакции может 
достигать 2260 °С [10] при максимальной адиабати-
ческой температуре реакции горения 2735 °С [11]. 

Как известно, МАХ-фаза формируется в  нес
колько стадий: на первой  – образуются твердые 
частицы TiC и расплав системы Ti–Si, на второй  – 
происходит растворение частиц TiC в расплаве Ti–Si, 
в результате которого наблюдается кристаллизация 
пластин МАХ-фаз Ti3SiC2  [12–14]. Быстротечность 
СВС, когда продолжительность первой стадии может 
быть менее 3–4 с, не позволяет управлять процессом 
после запуска реакции горения. Поэтому поиск опти-
мальных условий синтеза является важной задачей, 
направленной на получение Ti3SiC2 максимальной 
чистоты. К факторам, снижающим чистоту продукта 
СВС-реакции, относят нарушение стехиометрии 
шихты, недостаточную по времени выдержку при 
высокой температуре, связанную с быстрым остыва-
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Abstract. This study examines how additions of Si, Al, Cu, and Cr powders to the stoichiometric 3Ti–Si–2C (at. %) charge influence 

the formation of the Ti3SiC2 MAX phase during self-propagating high-temperature synthesis (SHS) performed in air within a sand 
bed, without a sealed reactor or controlled atmosphere. The effect of partially or fully substituting elemental Ti and Si powders with 
TiSi2 on the Ti3SiC2 yield is also assessed. Microstructural characterization of the SHS products was conducted using scanning 
electron microscopy equipped with energy-dispersive spectroscopy, and the phase composition was quantified by X-ray diffraction. 
An addition of 0.1 mol Si to the stoichiometric mixture increases the Ti3SiC2 content in the product to approximately 70 vol. %. 
Incorporating 0.1 mol Al decreases the Ti3SiC2 fraction to 39 vol. % and results in the formation of TiAl. In contrast, combining 
a silicon excess with 0.1 mol Al in the 3Ti–1.25Si–2C + 0.1Al system markedly enhances the Ti3SiC2 yield, reaching ~89 vol. %. 
For synthesis in the TiSi2–C system, the share of the MAX phase decreases while secondary phases become more prevalent; 
the maximum Ti3SiC2 content in this system is 56 vol. %. When TiSi2 fully replaces elemental silicon in the 2.5Ti–0.5TiSi2–2C 
mixture, the Ti3SiC2 fraction drops to 20 vol. %. 
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нием СВС-продукта. Это приводит к повышенному 
содержанию побочных продуктов TiC и TiSi2 . 

Таким образом, можно отметить, что реакции 
образования TiC и расплава TiSi на первой ста-
дии СВС конкурируют между собой, так как оба 
первичных продукта образуются одновременно 
в  одной реакционной системе, распределяя между 
собой доступный объем титана. Очевидно, что при 
недостатке одного из промежуточных компонента 
и соответствующем избытке второго будет проис-
ходить снижение содержания Ti3SiC2 в конечном 
СВС-продукте. 

В литературе чаще всего TiC наблюдается как 
основной побочной продукт при синтезе Ti3SiC2 . Это 
указывает на недостаток расплава TiSi для струк
турообразования пластин Ti3SiC2 в реакционной 
системе. Поэтому во многих работах  [15–22] син-
тез МАХ-фазы Ti3SiC2 осуществляют с участием 
не элементных порошковых составляющих шихты, 
а химических соединений. Например, в реакционную 
шихту можно вводить химическое соединение – диси-
лицид титана TiSi2 , который имеет наименьшую тем-
пературу кристаллизации в системе Ti–Si (1330 °С). 

Важно отметить, что расплав Ti–Si кристалли-
зуется в диапазоне температур 1480–1570 °С, при 
которых процесс синтеза Ti3SiC2 существенно замед-
ляется. Известно, что, например, добавка алюминия 
позволяет снизить температуру кристаллизации рас-
плава Ti–Si, что увеличивает время взаимодействия 
TiC и жидкого Ti–Si в процессе остывания после 
СВС. В системе 3Ti–Si–2C–0,1Al  (ат. %) методом 
СВС в среде аргона с предварительной вакуумной 
сушкой шихты удалось получить продукт, содер-
жащий 89 %1 Ti3SiC2  [23]. Авторы отмечают, что 
добавление алюминия в стехиометрическую шихту 
3Ti + Si + 2C подавляет реакцию образования TiC, 
а это повышает выход Ti3SiC2 . В СВС-системе 
3Ti + 1,2Si + 2C + 0,1Al был достигнут выход Ti3SiC2 
около 83 % при 13 % TiC и 4 % Ti5Si3 [24]. Важность 
небольшого избытка кремния в реакционной системе 
отмечалась неоднократно в литературе [25–27], и это 
также может быть связанно с температурой кристал-
лизации расплава Ti–Si [28–30]. 

Согласно фазовой диаграмме Ti–Si при содержа-
нии кремния 50 ат. % температура кристаллизации 
составляет 1570 °С, при незначительном его превы-
шении более 50 ат. % Si она падает до 1480 °С, а при 
более 67 ат. % Si – до 1330 °С. 

Добавление 5–10 % Cu к Ti и Si также снижает 
температуру плавления, согласно двойным фазовым 
диаграммам Ti–Cu  [31] и Si–Cu  [32], и вероятно, 
может снизить температуру кристаллизации рас-

плава Ti–Si–Cu, что также повлияет на повышение 
доли Ti3SiC2 в СВС-продукте. При этом известно, что 
взаимодействие Ti3SiC2 с Cu приводит к разложению 
МАХ-фазы через деинтеркаляцию кремния в расплав 
меди с образованием Cu(Si) и TiCx [33; 34]. 

Добавление 10 ат. % Cr к Ti и Si приводит к сни-
жению температуры плавления полученных соедине-
ний с 1670 до 1550 °С в первом случае [35] и c 1414 
до 1305 °C во втором [36].

В литературе не найдены данные об особенностях 
взаимодействия расплава Cr с Ti3SiC2 , что связано 
с высокой температурой плавления хрома (1856 °С), 
а Ti3SiC2 начинает разлагаться уже при 1450 °С [1].

Возможность управления механизмом образо-
вания Ti3SiC2 в условиях СВС позволяет подобрать 
наиболее оптимальные с точки зрения энергоэффек-
тивности и технологической простоты условия син-
теза МАХ-фазы. Как правило, процесс СВС Ti3SiC2 
проводят в закрытых реакторах в среде с защитной 
атмосферой либо в вакууме, что существенно повы-
шает стоимость МАХ-фазы, делая ее массовое про-
изводство нерентабельным. Поэтому данная работа 
направлена на поиск более простого и доступного 
способа синтеза Ti3SiC2 с минимальным количест-
вом побочных фаз, и ее целью является исследование 
влияния добавок Si, Al, Cu, Cr и TiSi2 на образование 
МАХ-фазы Ti3SiC2 простым и энергоэффективным 
методом СВС на воздухе под слоем песка.

Методика проведения  Методика проведения  
исследованийисследований

В качестве исходных реагентов для синтеза 
использовали порошки пористого титана марки 
ТПП-7 с  крупным размером частиц (d ⁓ 300 мкм, 
чистота 98 %), технического углерода Т900 
(d ~ 0,15 мкм, агломераты до 10 мкм, чистота 99,8 %), 
коллоидного графита С-2 (d ⁓ 15 мкм, чистота 
98,5 %), кремния Кр0 (d ⁓ 1÷15 мкм, чистота 98,8 %), 
алюминия ПА-4 (d ⁓ 100 мкм, чистота 98 %), меди 
ПМС-1 (d ⁓ 100 мкм, чистота 99,5 %), хрома Х99Н1 
(d ⁓ 100 мкм, чистота 99,0 %) и силицида титана 
TiSi2 (d ⁓ 100 мкм, чистота 99,0 %).

Исходные порошки взвешивали на лабораторных 
весах с точностью 0,01 г и смешивали в керамичес
кой ступке в течение 5 мин для получения однород-
ной массы следующих систем 3Ti–Si–2C + 0,1Al, 
3Ti–Si–2C + 0,1Cu и 3Ti–Si–2C + 0,1Cr, а также 
TiSi2–C с заменой элементных кремния и титана на 
TiSi2 в количестве 15, 50 и 100 % (полной замены) 
в расчете на получение МАХ-фазы Ti3SiC2 .

Из полученной шихты в пресс-форме односто
ронним прессованием при давлении 22,5 МПа фор-
мировали цилиндрические заготовки диаметром 
23 мм. Масса каждой из них составляла 20 г. Реакцию 1 Здесь и далее имеются в виду мас. %, если не указано иное.
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СВС (горения) инициировали электрической 
Ni–Cr-спиралью накаливания. Образцы синтезиро-
вали сжиганием на воздухе под слоем песка, который 
уменьшает окисление продуктов горения [25]. Общая 
схема эксперимента представлена на рис. 1. Видно, 
что спрессованная смесь порошковых реагентов пол-
ностью изолирована песком от атмосферного воздуха 
с целью ограничения окисления продуктов реакции. 
После СВС вторичные реакции структурообразова-
ния Ti3SiC2 протекают в остывающем образце также 
под слоем песка.

Исследование микроструктуры и химический 
анализ образцов проводили посредством сканирую-
щего электронного микроскопа (СЭМ) Tescan Vega3 
(Чехия) с приставкой энергодисперсионной спект-
рометрии (ЭДС) X-act. Фазовый состав определяли 
рентгенофазовым методом с помощью дифракто-
метра ARL  X'trA-138 (Швейцария) с использова-
нием CuKα-излучения при непрерывном сканиро-
вании в  интервале углов 2θ = 5÷80° со скоростью 
2 град/мин. Количественное содержание фаз оцени-
вали методом корундовых чисел (RIR). 

Результаты и их обсуждениеРезультаты и их обсуждение
В результате реакции СВС получается пористый 

образец (каркас), который неоднократно был описан 
в предыдущих работах  [9; 12; 25]. После механи
ческого измельчения СВС-каркас приобретает вид 
мелкодисперсного порошка необходимой дисперс
ности, регулируемой с помощью сит с определенным 
размером ячейки.

Для исследования возможности повышения 
выхода целевой фазы Ti3SiC2 в режиме СВС на воз-
духе был проведен ряд экспериментов, в которых 
в шихту 3Ti–1Si–2C вводили по 10 % Si, Cr, Al и Cu.

Можно отметить, что в образце, полученном с 
добавкой избытка кремния (рис. 2, а), непрореагиро-
вавший карбид титана является нестехиометричес
ким и примерно соответствует TiC0,6 . Элементный 

анализ области Ti–Si, имеющей более светлый отте-
нок, показал соотношение атомов Si:Ti = 60:40, что 
приблизительно соответствует фазе TiSi2 . Слоистая 
структура и соотношение элементов позволяют также 
идентифицировать области Ti3SiC2 . Аналогичная 
картина наблюдается при добавке в систему 10 % Cr 
(рис. 2, б), однако в данном случае следы Ti3SiC2 
практически отсутствуют, а хром сконцентриро
вался в области фазы TiSi2 . В образце с Cu (рис. 2, г) 
светло-серая область содержит преимущественно 
медь и кремний в соотношении около 50:15, а также 
до 10 ат. % углерода. МАХ-фазы Ti3SiC2 не обнару-
жено, а нестехиометрический карбид титана соот
ветствует TiC0,5 . Следует отметить присутствие зна-
чительного количества TiSi2 в непосредственном кон-
такте с TiC0,5 , однако структурообразования Ti3SiC2 
не произошло. Можно заключить, что введение 10 % 
меди или хрома приводит к ингибированию реакции 
образования Ti3SiC2 , однако механизм их влияния на 
формирование этой фазы в условиях СВС требует 
дальнейшего изучения. Это может быть связано с тем, 
что Cu и Cr не могут находиться на месте А-элемента 
в MAX-фазах, поэтому их добавки к расплаву Ti–Si 
затрудняют структурообразование Ti3SiC2 .

В образце с добавкой алюминия (рис. 2, в) обнару-
жены тонкие области темно-серого цвета, окружаю-
щие пластины Ti3SiC2 . Результаты МРСА позволяют 
предположить, что они представляет собой смесь фаз 
TiAl2 + TiSi2 . Известно, что температура кристал-
лизации TiAl2 составляет 1175 °С, что значительно 
ниже, чем у расплава Ti–Si (1330–1480 °С в зависи-
мости от соотношения Ti и Si). Учитывая механизм 
образования МАХ-фазы Ti3SiC2 , из взаимодействия 
фаз  – твердой TiC и жидкой Ti–Si, можно предпо-
ложить, что добавка Al, снижая температуру крис
таллизации Ti–Si, приводит к более длительному 
периоду времени, в течение которого расплав оста-
ется жидким в условиях СВС, что обеспечивает про-
должение взаимодействия с TiC. В результате про-
цесс структурообразования Ti3SiC2 может протекать 

Рис. 1. Принципиальная схема синтеза Ti3SiC2 под слоем песка

Fig. 1. Scheme for SHS of Ti3SiC2 under a sand layer
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дольше в тех же условиях СВС, что в конечном счете 
приводит к более высокому содержанию МАХ-фазы 
в СВС-продукте.

Обнаруженный результат соответствует анало
гичным данным, полученным в работе  [25], где 
добавка Al способствует повышению содержания 
Ti3SiC2 в  условиях реакторного СВС. Авторы пока-
зали, что суммарный избыток 20 % кремния и 10 % 
алюминия в системе Ti:Si:C:Al = 3:1,2:2:0,1 повы-
шает выход Ti3SiC2 с 64 до 83 %. 

Весьма вероятно, что дальнейшая оптимизация 
системы 3Ti–1xSi–2C–yAl по избыточному содержа-
нию Si (x) и добавке Al (y) позволит достичь большего 
выхода Ti3SiC2 в условиях СВС на воздухе. С  этой 
целью были исследованы различные составы СВС-
шихт с избытком кремния и добавкой алюминия. 

Результаты приведены в таблице. Видно, что избы-
ток кремния в количестве 15–25 % вместе с  добав-
кой 10 % Al существенно повышают содержание 
Ti3SiC2 , достигая максимума ~89 об. % в системе 
3Ti–1,25Si–2C + 0,1Al. Изменение массы алюми-
ния, вводимого в систему без избытка кремния, не 
приводит к существенным колебаниям содержания 
Ti3SiC2 , количество которого колеблется в пределах 
38–47 об. %. Изображения микроструктуры образца 
с максимальным содержанием Ti3SiC2 представлены 
на рис. 3. Из его данных следует, что образец состоит 
преимущественно из характерных разнонаправлен-
ных пластин Ti3SiC2 , а поверхность пор покрыта 
тонким (10–15 мкм) слоем из плотно расположенных 
равноосных частиц TiC. Ширина большинства пла-
стин Ti3SiC2 колеблется в пределах 2–5 мкм, а длина 
составляет от 10 до 50 мкм.

Дифрактограммы продукта СВС с наибольшим 
и наименьшим содержаниями МАХ-фазы представ-
лены на рис. 4. Из его данных следует (рис. 4, a), что 
соотношение интенсивности основных пиков Ti3SiC2 
(39,5 и 42,4°) и TiC (36,0 и 41,8°) соответствует содер-
жанию Ti3SiC2 приблизительно 80 об. %. На рис. 4, б 
пики TiC существенно интенсивнее по сравнению 
с пиками Ti3SiC2 , что подтверждает 30 %-ное содер-
жание последнего. Кроме того, наблюдаются явные 
пики графита (около 26,5°) во всех образцах, пред-
ставленных в таблице, что также видно из рис. 4, б. 
Это может указывать на то, что часть углеродной 
фазы не догорает в процессе СВС. Важно отметить, 
что изначально аморфная сажа, взятая в качестве 

Рис. 2. Микроструктуры образцов после введения в систему 3Ti–1Si–2C по 10 % (0,1 моль) Si (a), Cr (б), Al (в) и Cu (г)

Fig. 2. Microstructures of the samples after introducing 10 % (0.1 mol) of Si (a), Cr (б), Al (в) and Cu (г) into the 3Ti–1Si–2C system

Содержание фаз в СВС-продукте системы  
3Ti–xSi–2C + yAl

Phase composition of SHS products  
in the 3Ti–xSi–2C + yAl system

СВС-система Ti3SiC2 , об. % TiC, об. %
3Ti–1,00Si–2C 36 64

3Ti–1,15Si–2C + 0,1Al 88 12
3Ti–1,20Si–2C + 0,1Al 78 22
3Ti–1,25Si–2C + 0,1Al 89 11
3Ti–1,00Si–2C + 0,05Al 38 62
3Ti–1,00Si–2C + 0,08Al 61 39
3Ti–1,00Si–2C + 0,12Al 47 53
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реагента в исходной СВС-шихте, приобретает струк-
туру графита, т.е. графитизируется в  ходе горения. 
Процесс графитизации аморфной сажи в  СВС-
системе Ti–C ранее описан в  [37; 38]. Кроме того, 
некоторые пики Ti3SiC2 незначительно смещены, что 
может указывать на частичное вхождение атомов Al 
в структуру Ti3SiC2 в процессе СВС, что отражалось 
в литературе ранее [23].

Далее рассмотрено получение пористых образцов 
с использованием химических соединений в системе 
TiSi–С в количестве 10, 50 и 100 % взамен элемент-
ных порошков Ti, Si. Анализ дифрактограмм полу-
ченных образцов показал, что такая замена приводит 
к увеличению содержания побочных фаз по срав-
нению с количеством МАХ-фазы (рис. 5). Также 
появляется новая побочная фаза SiC. Наибольшее 
содержание МАХ-фазы Ti3SiC2 в продукте дости-
гает 56 % при замене кремния на TiSi2 в количестве 

Рис. 3. СЭМ-изображения микроструктуры образца, синтезированного из системы 3Ti–1,25Si–2C + 0,1Al

Fig. 3. SEM images of the microstructure of the sample synthesized from the 3Ti–1.25Si–2C + 0.1Al system

Рис. 4. Дифрактограммы систем 3Ti–1,25Si–2C + 0,1Al (a) и 3Ti–1,00Si–2C + 0,05Al (б)

Fig. 4. XRD patterns of the 3Ti–1.25Si–2C + 0.1Al (a) and 3Ti–1.00Si–2C + 0.05Al (б) systems

Рис. 5. Зависимость содержания фаз в продукте СВС  
от степени замещения Si и Ti на TiSi2 в исходной  

шихтовой смеси 3Ti–1Si–2C

Fig. 5. Dependence of the phase composition  
of the SHS product on the degree of Si and Ti substitution  

by TiSi2 in the 3Ti–1Si–2C green mixture
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10 %. Однако при увеличении доли TiSi2 до  100 % 
в исходной шихте содержание МАХ-фазы Ti3SiС2 в 
продукте уменьшается до 20 %. Для сравнения, при 
СВС образцов из элементных порошков Ti, Si и С 
в стехиометрическом соотношении максимальное 
содержание МАХ-фазы составляет 66 % [25]. Такой 
результат может быть связан с недостатком темпе-
ратуры в ходе СВС, из-за чего время существования 
расплава Ti–Si уменьшается, и процесс структуро
образования Ti3SiC2 не успевает завершиться.

ВыводыВыводы
1. Установлено, что совместные добавки Si и Al 

в системе 3Ti–1,25Si–2C + 0,1Al существенно повы-
шают содержание Ti3SiC2 , достигая ~89 об. % при 
СВС под слоем песка без использования реактора 
с защитной атмосферой.

2. Показано, что добавки Cu и Cr в системах 
3Ti–1Si–2C + 0,1Cu и 3Ti–1Si–2C + 0,1Cr приво-
дят к практически полному отсутствию Ti3SiC2 
в СВС-продукте.

3. Выявлено, что частичная (10 и 50 %) и полная 
(100 %) замены элементных порошковых реагентов 
Ti, Si на соединение TiSi2 приводят к значительному 
снижению выхода целевой МАХ-фазы в результате 
СВС на воздухе. 

4. Вероятно, что с помощью дальнейшей опти-
мизации системы 3Ti–1,25Si–2C + 0,1Al по фракци-
онному составу исходных порошковых реагентов, 
а также с учетом масштабного фактора можно будет 
добиться содержания Ti3SiC2 выше 90 % в условиях 
безреакторного СВС.
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