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Аннотация. Проведены исследования, направленные на получение алюмоматричных композитов, армированных частицами 

аморфного микрокремнезема. Установлена возможность получения материалов системы Al–5SiO2 (мас. %) с использо-
ванием методов литья с интенсивным перемешиванием и полутвердого металлического литья. Наибольшую эффектив-
ность продемонстрировал второй способ с последующей жидкой штамповкой. Показана возможность использования 
магния в качестве поверхностно-активной добавки, способствующей удалению кислорода с поверхности дисперсных 
частиц и  улучшению механических свойств композиционного материала в процессе термообработки. Полученный 
композит имеет равномерное распределение дисперсных частиц микрокремнезема в объеме металла, обладает твер-
достью, коррозионной стойкостью и удельным весом, превосходящими аналогичные характеристики исходного 
алюминиевого сплава. Таким образом, полученные с использованием разработанной технологии материалы могут 
быть востребованы во всех сферах транспортного машиностроения, а также в отраслях авиационной и космической 
промышленности.  

  mike12008@yandex.ru
Abstract. Studies were carried out to develop aluminum matrix composites reinforced with amorphous microsilica particles. The feasi-

bility of producing Al–5 wt. % SiO2 materials using both stirring-assisted casting and semisolid metal processing was established. 
The latter method, when combined with subsequent squeeze casting, demonstrated the highest efficiency. Magnesium was shown 
to function as a surface-active additive that removes oxygen from the surfaces of the dispersed particles and enhances the mechanical 
properties of the composite during heat treatment. The resulting material exhibits a uniform distribution of microsilica particles 
throughout the aluminum matrix and demonstrates hardness, corrosion resistance, and reduced specific weight superior to those 
of the base AlSi7 alloy. Therefore, the composites produced using the developed technology are promising for applications in trans-
port engineering as well as in the aerospace and space industries. 
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IntroductionIntroduction
The advancement of modern engineering is inse

parable from the  use of materials  – both alloys and 
composites  – possessing specific physical, chemical, 
mechanical, and operational properties, as well as from 
the continuous improvement of technologies for their 
production.

The development of composite materials consisting 
of a metallic matrix reinforced by dispersed particles 
is among the highest-priority directions in contempo-
rary metallurgy and materials science. In many cases, 
only composites can meet the  stringent requirements 
of advanced engineering applications, which increa
singly demand higher loads, operational speeds, tem-
peratures, environmental aggressiveness, and reduced 
structural weight. Among metal-matrix composites, 
aluminum-based systems are the  most widely used 
owing to their high specific strength, low density, and 
advantageous combinations of mechanical and opera-
tional properties [1–10]. 

A broad range of technologies is available for 
the  fabrication of aluminum matrix composites 
(AMCs), including powder metallurgy, mechanical 
dispersion, liquid metal infiltration, and various cast-
ing techniques [1; 4; 11]. Casting assisted by intensive 
stirring is the  most accessible and widely employed 
method. This process involves introducing reinforcing 
particles into molten aluminum followed by mechani-
cal or electromagnetic stirring [12–14]. A known limi-
tation of this method is the agglomeration of the added 
particles due to their inherently low wettability in 
an aluminum melt [15]. 

Several studies have demonstrated that semisolid 
metal processing (SSM) represents one of the  most 
cost-effective approaches to producing aluminum 
matrix composites. In this method, the  melt is pro-
cessed within the  temperature interval between liqui-
dus and solidus, where the alloy exhibits a slurry-like 
rheology, enhancing particle incorporation  [16; 17]. 
Three closely related SSM routes are distinguished: 
thixocasting, rheocasting, and thixomolding  [18–20]. 
To reduce porosity and refine the microstructure of fin-
ished products, high-pressure die casting is commonly 
applied as an auxiliary step [21]. Most research on 
AMCs focuses on reinforcing particles such as Al2O3 , 

ZrO2 , MgO, SiC, as well as carbon nanotubes [10–30]. 
The use of dispersed reinforcing materials is limited by 
the technological complexity of composite fabrication 
and by their cost, which is strongly influenced by mar-
ket conditions and varies significantly among different 
types of ceramic powders depending on their chemical 
composition, particle size, and degree of purity. 

In recent years, significant effort has been directed 
to  ward reducing the  cost of AMC production by 
employing inexpensive and widely available raw mate-
rials. In this study, microsilica  – an ultrafine mate-
rial composed of spherical SiO2 particles – is used as 
a modifying agent [4; 5]. Depending on the manufac-
turer, its market price ranges from 550 to 870 USD/t. 
A promising route to cost reduction is the use of dust 
collected from gas-cleaning systems of silicon-pro-
duction furnaces as a low-cost source of microsilica 
(~1500 RUB/t) [11]. 

The aim of the  present study was to develop 
a  method for producing Al–SiO2 composites contain-
ing up to 5 wt. % of reinforcing particles using inten-
sive stirring casting and semisolid metal processing, 
and to evaluate the influence of SiO2 particles on their 
microstructure and properties.

Materials and methodsMaterials and methods
For the laboratory studies aimed at producing com-

posites using amorphous silica, a hypoeutectic AlSi7 
silumin alloy was used as the matrix metal; its chemi-
cal composition was as follows (wt. %): 

Si . . . . . . . . .
Fe . . . . . . . .
Mg . . . . . . .
Mn . . . . . . .
Cu . . . . . . . .
Zn . . . . . . . .
Ga . . . . . . . .

7.00
0.19
0.25
0.10
0.05
0.07
0.001

Amorphous microsilica was collected from the gas-
cleaning system of JSC Kremniy (Shelekhov, Russia) 
and enriched by flotation  [17]. To improve the  wet-
tability of the  microsilica particles and suppress 
agglomeration during their introduction into the melt, 
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the  powder was subjected to ultrasonic treatment in 
acetone, rinsing with distilled water, drying, and sub-
sequent heat treatment at 200–300 °C. In parallel with 
thermal conditioning of the microsilica, the melt was 
alloyed with magnesium, added as MG-90 master alloy 
in an amount of 1 wt. % to enhance interfacial wetting.

Two processing routes were employed to produce 
the aluminum matrix composites: 

– intensive mechanical stirring followed by gravity 
casting; 

– semisolid metal processing followed by squeeze 
casting. 

To enable an objective comparison of the  micro-
structure and physicomechanical properties, the  base 
aluminum alloy was remelted using the  continuous 
casting method. 

During stirred casting, microsilica particles were 
introduced at 730 °C, whereas in semisolid process-
ing they were introduced at 585–615 °C, i.e., between 
the  solidus and liquidus temperatures of the  AlSi7 
alloy. All subsequent casting operations were per-
formed at temperatures above the  liquidus (730 °C). 
The SiO2 particles, preheated to 200–300 °C, were fed 
into the melt at 5 g/min while the melt was stirred with 
a rotor at 200 rpm. The final forming step consisted of 
squeeze casting on a 25-ton hydraulic press. After that, 
the  ingots were subjected to heat treatment at 500 °C 
for 14 h, followed by quenching in warm water (70 °C) 
and precipitation, or age hardening, at 165 °C for 
8 h. The T6 heat-treatment mode was applied to both 
the unreinforced alloy and the composite and consisted 
of solution treatment at 525 °C for 12 h, followed by 
quenching in warm water at 80 °C and aging at 165 °C 
for 8 h. 

Phase analysis was performed using a Shimadzu 
XRD-7000 diffractometer within a 2θ range of 10–70°. 
Microstructural analysis in secondary-electron and 
backscattered-electron modes was carried out using 
a  JEOL JIB-4500 scanning electron microscope 
equipped with an Oxford Instruments X-Max EDS 
detector. Metallographic observations were conducted 
using an Olympus GX-51 optical microscope. Hardness 
was measured using a Zwick Brinell hardness tester 
with a 2.5-mm indenter and a 62.5-kg load. Corrosion 
behavior was examined by potentiodynamic polari
zation using a three-electrode cell with a saturated 
calomel reference electrode and platinum counter elec-
trode. Density was measured by hydrostatic weighing 
according to GOST 8.568-97. Cubic samples (10 mm 
edge length) were degreased and dried at 105 °C for 
1 h to remove adsorbed moisture.

Results and discussionResults and discussion
SEM images of the  spherical microsilica particles 

(Fig. 1) reveal a wide particle-size distribution and 
the adhesion of smaller particles to the surfaces of larger 
spheres due to their high surface energy (Fig. 1, b).

The microsilica used in this study had the following 
chemical composition (wt. %): 

SiO2 . . . . . . . . . . . . . .
Al2O3 . . . . . . . . . . . . .
Fe2O3 . . . . . . . . . . . . .
CaO . . . . . . . . . . . . . .
MgO . . . . . . . . . . . . .
Na2O . . . . . . . . . . . . . .
K2O . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . .
S . . . . . . . . . . . . . . . . .

95.0
0.55
0.61
0.96
1.21
0.31
0.84
0.25
0.27

Fig. 2, a shows the  microstructure of the  initial 
hypoeutectic AlSi7 silumin, consisting of dendrites of 
the  aluminum solid solution (α-Al) and the α-Al + Si 
eutectic located in the interdendritic regions.

Fig. 1. SEM images of microsilica particles 

Рис. 1. СЭМ-изображения частиц микрокремнезема
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The AlSi7 alloy produced by high-pressure die cast-
ing exhibits a refined microstructure with an average 
grain size of 15 μm and no shrinkage or gas porosity. 
The microstructure of the Al–SiO2 composite produced 
by casting with intensive mechanical stirring and sub-
sequent pouring at 720 °C (Fig. 2, b) is characterized 

by agglomeration of the  microsilica particles and 
the  formation of regions of shrinkage porosity. This 
indicates a high degree of SiO2 particle agglomera-
tion, which increases in direct proportion to the casting 
temperature. 

Fig. 2, c presents the microstructure of the Al–SiO2 
composite fabricated via semisolid metal processing 
at 600 °C with intensive mechanical stirring followed 
by squeeze casting. Under these conditions, the com-
posite exhibits a uniform distribution of the microsilica 
particles throughout the material, to gether with grain 
refinement and the  elimination of shrinkage porosity. 
Because the squeeze-casting process allows the metal 
to be processed in the  form of a semisolid slurry, 
the dispersed reinforcing particles become highly uni-
formly distributed and their agglomeration is effec-
tively prevented.

Semisolid processing was conducted within 
the temperature interval between the liquidus and soli-
dus, during which the  alloy containing primary α-Al 
dendrites was stirred at 590 °C. Processing the  alloy 
in this semisolid state enabled a uniform distribution 
of the  SiO2 particles throughout the  matrix  – an out-
come that could not be achieved by intensive stirring 
of the fully molten metal. The diffraction pattern of this 
sample shows reflections corresponding to Al, Si, 
and SiO2 (Fig. 3). The most intense peaks arise from 
metallic aluminum (2θ = 28.7°, 32.4°, 43.5°), crystal-
line silicon (2θ = 35.1°, 47.4°, 57.5°, 68.4°), silicon 
dioxide (2θ = 25.5°, 38.1°, 45.3°, 52.7°, 57.3°, 66.5°), 
and aluminum oxide (2θ = 37.6°, 41.9°, 44.8°). X-ray 
diffraction also revealed the  presence of MgAl2O4 
and Mg17Al12 , formed as a result of the  additional 

Fig. 2. Microstructures of the base AlSi7 alloy (a),  
the composite produced by casting with intensive  

mechanical stirring (b), and the composite produced  
by semisolid metal processing (c) 

Рис. 2. Микроструктуры исходного алюминиевого сплава 
AlSi7 (а), композита, полученного литьем с интенсивным 

механическим перемешиванием (b), и композита, 
полученного методом полутвердого металлического литья (c) 

Fig. 3. Diffraction pattern of the Al–SiO2 composite  
in the 2θ range of 10÷70° 

Рис. 3. Дифрактограмма композита Al–SiO2  
в диапазоне 2θ = 10÷70° 
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magnesium introduced into the  base silumin alloy. 
Magnesium improves the wettability of the microsilica 
particles by the  aluminum matrix through the  for-
mation of MgAl2O4 spinel, which removes surface 
oxides  [10; 17]. The  Mg17Al12 phase formed during 
heat treatment further contributes to strengthening 
of the composite.

The results show that the SiO2 content in the com-
posite material matches the  target value of 5 wt. %. 
This demonstrates that the  amount of dispersed par-
ticles introduced into the  aluminum matrix can be 
accurately controlled. However, to avoid the  forma-
tion of the Al3Mg2 intermetallic phase, which degrades 
the strength of the composite, the magnesium addition 
to the aluminum matrix should be limited to 2 wt. %. 

Brinell hardness data for the  cast AlSi7 silumin 
and the  composites produced from it by the  different 
processing routes are presented in Fig. 4. These results 
indicate that the  incorporation of amorphous micro-
silica particles into the cast silumin, provided they are 
uniformly distributed, leads to an increase in hard-
ness. The SiO2 particles in the aluminum matrix act as 
nucleation centers and promote grain refinement, while 
the mismatch in the coefficients of thermal expansion 
between the microsilica and the matrix alloy generates 
interfacial strain, which serves as a barrier to disloca-
tion motion.

The hardness of the composite materials is governed 
primarily by the  processing route and by the  degree 
of  dispersion of the  reinforcing particles. The  com-
posite obtained by casting with intensive mechanical 

stirring shows, even after heat treatment, a marked 
reduction in hardness relative to the base AlSi7 alloy. 
This deterioration is associated with the  pronounced 
agglomeration of microsilica particles and the resulting 
formation of shrinkage porosity. By contrast, the com-
posite produced by semisolid metal processing fol-
lowed by squeeze casting exhibits the highest hardness. 
This improvement is due to the more uniform disper-
sion of microsilica throughout the matrix and to grain 
refinement caused by crystallization under pressure in 
the presence of numerous nucleation sites. 

The tensile strength of the  composite produced 
by semisolid metal processing was 257 MPa, which 
is essentially equal to that of the  base AlSi7 alloy 
(σb = 269 MPa). In addition to its high strength, this 
composite showed enhanced corrosion resistance 
(Fig. 5). This enhancement is attributed to the  for-
mation of interfacial reaction products arising from 
the  interaction of aluminum, magnesium, and micro-
silica, which are less susceptible to corrosive attack. 
Phases such as MgAl2O4 , Al2O3 , and SiO2 form a pro-
tective oxide layer on the material surface.

The density of the  composite obtained by casting 
with intensive mechanical stirring is slightly lower 
(2.58 g/cm3) than that of the  base alloy (2.64 g/cm3). 
This reduction is explained by the  presence of shrin
kage porosity and agglomerates of SiO2 particles, as 
revealed by microstructural analysis (Fig. 2, b).

The lowest density (2.47 g/cm3) was measured for 
the composite produced by semisolid casting followed 
by squeeze casting. Despite its lower density, this 
material exhibited the best mechanical properties and 

Fig. 4. Brinell hardness of the base AlSi7 alloy (a)  
and of the composites produced by casting  

with intensive mechanical stirring (b),  
and by semisolid metal processing (c)

 – Al;  – Al + SiO2 
Рис. 4. Твердость исходного алюминиевого сплава AlSi7 (a)  

и композитов, полученных литьем с интенсивным  
механическим перемешиванием (b) и методом  

полутвердого металлического литья (c)

 – Al;  – Al + SiO2

Fig. 5. Potentiodynamic polarization curves  
of the base AlSi7 alloy (1) and the composite  
produced by semisolid metal processing (2) 

Рис. 5. Кривые потенциодинамической поляризации 
исходного алюминиевого сплава AlSi7 (1) и композита,  

полученного методом полутвердого  
металлического литья (2)
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no macroporosity. The main reasons for the  reduced 
density in this case are.

1. The presence of a low-density reinforcing phase. 
Amorphous SiO2 particles have a density of about 
2.2 g/cm3, which is lower than that of the  aluminum 
matrix (~2.7 g/cm3). The addition of 5 wt. % SiO2 
therefore naturally reduces the  overall density 
of the composite.

2. Densification under pressure. Squeeze cast-
ing produces a material with a more homogeneous 
microstructure and minimal porosity, as confirmed by 
the micrographs (Fig. 2, c). 

Thus, in this case the decrease in density is not asso-
ciated with defects but rather with the uniform distribu-
tion of the lightweight ceramic phase within the metal-
lic matrix.

ConclusionsConclusions
This study confirms the  feasibility of producing 

Al–SiO2 composites using intensive stirring cast-
ing and semisolid metal processing with subsequent 
squeeze casting. The latter method proved most effec-
tive, enabling the  fabrication of composites contain-
ing 5 wt. % uniformly distributed microsilica par-
ticles. The  results showed that magnesium enhances 
the wettability of the dispersed microsilica particles by 
removing oxygen from their surfaces and by suppress-
ing further oxide formation through the generation of 
the  MgAl2O4 intermetallic phase. An improvement 
in the  mechanical properties of the  composite during 
heat treatment was also observed, which is attributed 
to the formation of the Mg17Al12 phase. The resulting 
composite exhibited higher hardness and superior cor-
rosion resistance compared to the base AlSi7 alloy. 

The proposed processing routes  – casting with 
intensive mechanical stirring and semisolid metal pro-
cessing – enable the production of Al–SiO2 composi
tes with high strength, excellent corrosion resistance, 
and low porosity, making them promising for trans-
port engineering as well as the aviation and aerospace 
industries. The findings expand current understanding 
of the use of micro- and nanoscale powders as alloy-
ing and modifying agents in next-generation composite 
materials. 
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