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Introduction

Every mechanical part to be used with safety must 

have a strength, — static and fatigue — appropriately 

higher than the load expected on operation. Further-

more, in the case of parts characterized by functional 

requirements of fair or good accuracy, the acting stress-

es must be lower than the stresses capable of causing 

plastic yielding of the provided material. In the case of 

P/M iron-based materials, peculiarly porous, with po-

rosity ranging generally from 16 to 5 %, the mechani-

cal strength, static or dynamic, is a function of densi-

ty, type of alloying, sintering conditions, possible heat 

treatment, including sinter-hardening. As to the influ-

ence of density, the data in the literature are numerous, 

but not completely univocal. Presumably, in the USA, 

A. Squire, [1], was the first scientist to publish experi-

mental results, as shown by Fig. 1. That chart became 

almost a classic, because P.W. Lee, [2], F.V. Lenel, [3], 

and, after half a century, J. Kosko, [4], republished the 
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same plot. Even R. Kieffer and W. Hotop, [5] published 

the Squire’s results, with the additional indication that 

the American scholar had also studied the shear strength 

of sintered iron and had found an exponential law of de-

pendence on density. A couple of years after A. Squire, also 

M.Ju. Balschin, in Soviet Union, [6], found experimen-

tally a law of dependence of the same type, then con-

firmed in his text [7]. Always in past times, W.V. Knopp, 

[8], and G.S. Pisarenko, V.I. Troshchenko and A.Ya. Kra-

sovskii [9] arrived at similar results. A few years later, 

H.H. Hausner, [10], published graphs, for P/M steels 

(7 % Ni, from 0 to 0.8 % C, density between 6.4 and 

7.6 g/cm3), which clearly show exponential trends. The 

first contradictions appear with F.V. Lenel, [3], which 

published three graphs, relating to steels of different 

composition, with conflicting trends: exponential, pa-

rabolic, linear. F.V. Lenel states that the data came from 

an ASM publication, [11]. R.M. German, [12], proposes 
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once again an exponential type relation, with different 

slopes for different materials, as shown in Fig. 2, with 

both logarithmic scales. Surprisingly, R.M. German spe-

cifies that, in the first approximation, the correspond-

ence between tensile strength and density should be 

linear, according to R.T. DeHoff and J.P. Gillard [13]. 

This hypothesis, however, is inconsistent with any frac-

tographic observation, clearly indicating that the size of 

inter-particle necks, (certainly lower, in relative terms, 

of the fraction of observable metal area at LOM), limits 

the mechanical strength. R.M. German, however, in a 

subsequent text, [14], published a table on the relation-

ship between UTS and density of a simple carbon steel 

(0.5 %), which clearly indicates a linear law. F. Thümmler 

and R. Oberacker, [15], republished a graph initially 

made by G. Zapf, Fig. 3, [16], and specify: «In practice, 

the tensile strength can be often interpolated linearly for 

densities ranging from 6.5 to 7.5 g/cm3, while rupture 

elongation and impact strength present a stronger depen-

dence on porosity. This is true for a number of sintered 

steels, while others show a rather different behavior of 

the strength, with slope increase at high density... The 

linear dependence of strength from porosity, howev-

er, is not theoretically founded». Even W. Schatt and 

K.P. Wieters, [17], publish a diagram, due to G. Zapf, 

on which, for Cu-based sintered materials, the band of 

values clearly follows an exponential trend. P. Beiss, [18, 

19], who published over 100 plots, is certainly the scien-

Fig. 1. Tensile strength versus density of sintered iron, 

from 6 powder grades; sint. one hour at 1100 °C 

(from F.V. Lenel [3])

Fig. 2. Relationship between tensile strength and relative 

density of sintered materials (from R.M. German [12])

Fig. 3. Dependence of mechanical properties of P/M steels 

from sintered density (from G. Zapf [16])

Rm – ultimate tensile strength; A – rupt. elongation; 

ak – fracture toughness
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tist to be acknowledged as to quantity of data and graphs 

presented, where exponential trends prevail. As shown, 

the indications in the literature agree on one obvious 

fact: the mechanical strength of sintered materials is 

an increasing function of the density. The dependence 

law, however, does not appear univocal with certainty. 

Even the use of MPIF Standards, [20], or publications 

of very large powder producers, [21], does not allow 

drawing conclusive opinions. For completeness, we 

can stress that several authors attempted to model the 

mechanical behavior of porous materials, by means of 

different formulas, mainly of exponential type. Among 

the various proposed laws, the ones that seem to best 

match the experimental results are due to M. Eudier, 

[22], supplemented by G.F. Bocchini, [23], with the in-

sertion of a pore form factor, and to H.E. Exner and 

D. Pohl, [24]. 

Determination of compressibility 

according to the Standards

As shown, the mechanical properties of sintered 

metallic materials depend on density. Furthermore, 

frequent requirements of good dimensional accuracy 

oblige to choose materials that exhibit small dimensio-

nal changes on sintering and, consequently, small densi-

ty changes. Then, the ability to reach high densities on 

cold (or «warm») compaction defines the suitability of 

any iron powder to densification by application of pres-

sure. The so-called compressibility curves graphically 

represent the density changes that occur when a metal 

powder (or a mix) is under pressure within rigid tools. 

National and/or international standards, [25—27], com-

pletely specify the test procedures. Fig. 4 shows a typical 

tool for compressibility test. Since the purpose of the test 

is to evaluate the behavior of metal powders under rela-

tively high pressures, the portion of the curve that gives 

densities below 200 MPa is usually neglected. This im-

plies that the compressibility curves are not usable when 

some transfer of powder mass is needed, to prepare the 

correct filling configuration before the beginning of 

pressure increase. Usually, the maximum test pressure 

is at least 700 MPa. The scales of the diagram are li-

near and pressure is plotted on the x-axis, while density 

is plotted on the y-axis. With only a few exceptions, the 

compressibility curves of metal powders are typical, with 

a pronounced convexity upwards. 

The main reasons that lead to this trend are:

• the progressive decrease in the voids between parti-

cles, both as fraction and size; 

• the work-hardening of the metal. 

By means of the compressibility curves we can 

measure an «absolute» property of a given powder (or 

powder mix), i.e. the law of density increases as a func-

tion of the applied pressure, according to a standardized 

procedure on reference samples. This method appears 

suitable to test and compare different metal powders, 

and mixtures thereof. However, at least a priori, it could 

be unsuitable to predict the behavior of a powder sub-

jected to pressure, when the shape of the green part sub-

stantially differs from that of compressibility samples 

(small cylinders or parallelepipeds).

Analysis of friction conditions 

on different surfaces 

In powder pressing the friction that contrasts densifi-

cation acts between:

a) powder and surfaces of die and core-rods; 

b) powder and faces of punches that apply pressure; 

c) surfaces of powder particles in contact and in re-

lative motion. 

The conditions of the tribological couples are sub-

stantially different, as shown, qualitatively, in Table 1.

If we consider the average specific surfaces of iron 

powders commonly utilized for manufacturing P/M 

parts, with some approximation, we can estimate that, in 

a 70 g compact, the total powder surface is 6.5·104 cm2, 

while other parameters change, as density increases, as 

shown in Table 2.

Even considering that the «true» surface of contact 

and sliding is a small fraction of the apparent, one, it 

should be clear that its value is still considerably high-

Fig. 4. Example of simple tool for compressibility test
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er than that of powder-tool contact surfaces, which, at 

7.0 g/cm3 density, for compressibility test specimens, in-

dicatively, are 10 cm2 between punches.

Distinctive features of tribological couples on com-

paction and powder and 16 cm2 between die and powder. 

These approximate evaluations show the basic role of 

lubricant for decreasing the resistance to densification 

coming from mutual sliding between powder particles. 

The importance sometimes given to wall lubrication 

seems worthy of a proper critical review. 

Since on compaction the pressure acts uniaxially, 

the plastic deformation of the particles is not isotropic. 

If we imagine the compaction of equally sized spheri-

cal particles, neatly stacked according to the fcc lattice, 

Fig. 5 shows, schematically, the ideal sequence of par-

ticle deformation. Actually, the particle shape is neces-

sarily different from the spherical one (to ensure a suffi-

cient green strength of compacts), while their size ranges 

within a broad spectrum, typically between about 0.02 

and 0.18 mm.

Fig. 6, from W.B. James, [28], shows a section of a 

Fe + 2 % Cu pressed material, compacted according a 

vertical axis, after lubricant removal by suitable thermal 

process. Since the resistance to plastic deformation of 

copper particles is lower than that of iron particles, the 

harder granules squeeze the softer ones. In other words, 

the elongated shape of copper particles, predominantly 

on a nearly horizontal axis, appears as a clear sign of the 

anisotropy of plastic deformation in compaction.

Finally, Fig. 7 represents a schematic sequence, clos-

er to real situations, also showing some movements of 

rotation (or rearrangement), imposed by the rigid punch 

face, which applies pressure, before the stage of materi-

al’s plastic deformation begins.

Table 1. Distinctive features of tribological couples on compaction

Contact zone Die/powder Punch/powder Powder/powder

Case A B C

Deformability of materials Very different Very different Identical or very similar

Hardness of materials Very different Very different Identical or very similar

Chemical affinity between materials Modest Modest Very high

Extent of sliding From very high to nothing Very modest From very high to modest

Table 2. Features of pores and contact areas 

at two compaction densities; iron powder

Compact density, g/cm3 5.0 7.0

Average pore volume, cm3 3.03·10–10 1.30·10–10

Average pore diameter, cm 8.3·10–4 6.3·10–4

Total number of pores 1.54·109 1.54·109

Average pore surface, cm2 2.16·10–6 1.25·10–6

Total pore surface, cm2 33·102 19·102

Maximum inter-particle 

contact area, cm2 6.17·104 6.31·104

Fig. 5. Equally sized spherical particles arranged 

as fcc lattice: steps of plastic deformation on compaction

Fig. 6. Vertical cross-section (compaction axis) 

of a presintered compact; Fe + 2 % Cu (white section of 

particles) mix; atomized powder (from W.B. James [28])
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Friction on the walls of die 

and core rods

A. Duffield and P. Grootenhuis, [29], have been the 

first scientists to analyze the equilibrium conditions of 

a thin powder layer, ideally isolated within a body sub-

jected to axial pressure, and drowned the formula that 

describes the variation of the axial pressure due to fric-

tion on the die walls, as a function of the distance from 

the faces of punches. They used a very simplified theore-

tical model, which, strictly speaking, may be valid only 

as a first approximation. In fact, in the analytic deve-

lopment, they assumed a plane stress state also for quite 

large surfaces. Referring to Fig. 8 and using suitable 

measurement units, let us indicate with:

A the compaction surface, u the contact perimeter 

between powder and die, (and core rods, if present), 

pi the uniform pressure applied at the instant t from both 

the upper and the lower punch (hypothesis of bilate-

ral, symmetrical and simultaneous compaction), p the 

uniform pressure acting in axial direction, at the in-

stant t, on a f lat surface located at a certain distance, 

x, from the nearest punch, dh the infinitesimal thick-

ness of a powder layer, (dh is measured as positive in 

the direction of increasing x), dp the small decrement 

of axial pressure on the infinitesimal thickness dx, 

consequence of the friction on the die (or lateral walls), 

originated by the radial pressure, pr the radial pressure 

originated by the axial one, and to it proportional, μ 

the ratio between radial pressure and axial pressure, at t 

instant, Hi the height «snapshot» of the compact at t in-

stant, pn the minimum axial pressure, which acts at time 

t. Considering the ideal condition of perfect symmetry, 

the minimum pressure is that one acting at half height 

of the compact, on the mid-plane, in the so-called 

«neutral» zone, f the friction coefficient, assumed as a 

constant, at time «t».

The powder layer, having infinitesimal thickness, 

must be in equilibrium under the action and the result-

ing reactions, due to friction, inter-particle inside the 

powder mass and on the side (die) walls. 

The condition to fulfil is the following:

  (1)

i.e.

  (1′)

Since it can be accepted that it is dp·dx << dp and 

dp·dx << dx, and considering that, when the x-coor-

dinate increases the pressure p decreases, by means 

of a series of simple mathematical passages the solu-

Fig. 7. Schematic representation of particle rearrangement, 

rotation and deformation, under the action of a rigid punch

Fig. 8. Equilibrium conditions of a thin powder layer in presence of side wall friction
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tion of relation (1) can be obtained and expressed as 

follows

  (2)

where p0 is the pressure exerted by the upper (or lower) 

punch.

Equation (2) indicates that the decrement of axial 

pressure is an increasing function of the friction coef-

ficient. Plotting on a diagram, on a logarithmic scale, 

the pn /p0 ratio, as a function of the aspect ratio H/D 

(D being the diameter of a small cylinder, without holes) 

straight lines can be obtained. 

The slope of these straight lines increases as the fric-

tion coefficient increases. It should obvious that the dec-

rement of axial pressure is much higher in the case of 

thin-walled hollow compacts. 

Coming back to formula (2), being stated in advance 

that the axial pressure is constant on any horizontal 

section and on the face of the nearest acting punch, 

the law of variation given by the formula is valid only 

for high values of the ratio between friction area and 

compaction area. Such limitation can be easily accept-

ed if the part geometry is characterized by a high ratio 

between side walls and compaction area. This condi-

tion is typical of many compact shapes, which may 

require quite high pressures to reach a given density. 

These increments of pressures, compared to the values 

typical of compressibility curves, come from the great 

extent of the area of side surfaces. Formula (2) enables 

evaluating the effects of friction on the axial pressure 

distribution. To go further, namely to evaluate the ef-

fects of pressure distribution on the average density, we 

should introduce a correspondence law between pres-

sure and density. To be simple, we can consider the 

following semi-empirical relationship, going back to 

W.D. Jones, [30), and successfully applied by G.F. Boс-

chini, [31, 32]:

  (3)

where a, b and c are typical parameters of a given pow-

der mix, which can be obtained from three couples of 

associated values of pressure and density. Within the test 

range, the densities that can be obtained at various pres-

sures can be foreseen with a good enough approximation. 

However, any extrapolation requires caution. In fact, it 

may happen that extrapolating (3) beyond determinate 

pressures — not so far from the extremes of the range — 

indications physically unacceptable are drawn. At this 

stage, we can assume that previous hypothesis and equa-

tion (3), successfully applied to finite thicknesses, also 

holds for very thin powder layers. In this way, it is pos-

sible to find the analytical relationship, which relates 

average density with compact geometry, ratio between 

pressures, μ, and friction coefficient f. Remembering 

the above-mentioned hypotheses, if x is the distance be-

tween the surface under consideration and the nearest 

punch face, the average density. γm must be given by the 

integral function:

  (4)

(For ease of writing and considering symmetric and bi-

lateral compaction, it is better to refer to L = H/2). By 

inserting expression (4) into (3) we get

  (5)

i.e.

  (5′)

According to (2), at a generic ordinate x it is

  (2′)

so that equation (5′) may be put in the form

  (6)

From the solution of (6) by integration we get

  (7)

i. e.

  
(8)

At first, formula (8) seems rather complicated. How-

ever, it can easily be expressed in a relatively simple form 

by gathering a few quantities, which are either in the 

fractions or as exponents, as follows:
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(9)

K1 and K2 are two dimensionless parameters, de-

fined, respectively, by the following equations:

  (10)

where the previously explained quantities appear.

K1 is a parameter of physical nature while K2 is a geo-

metrical one.

Expression (9) describes the relationship between the 

average density, the axial pressure exerted by punches, 

the ratio between the radial and the axial pressure, the 

wall friction coefficient and the geometry of any com-

pact. For its practical use, in the strictest sense, the small 

test probes should have the same extent of lateral friction 

surface and, therefore, the same height. Consequently, 

the usual compressibility curves, obtained from samples 

having a constant weight, can be used only as an approxi-

mation. The previous formulas allow us to get, by calcu-

lation, sheaves of compressibility curves only if the same 

distribution of pressures assumed in the model proposed 

by A. Duffield and P. Grootenhuis, [29], can be applied 

to all the possible part shapes. Each curve of the sheaf 

characterizes a certain geometry of the parts, univocal-

ly defined by the dimensionless parameter K2. To make 

these calculations, the values of the friction coefficient 

and the values of the pressure ratio are needed. Useful 

data have been published by W.M. Long, [33], G. Bock-

stiegel and J. Hewing, [34], E. Ernst et alii, [35], and 

again E. Ernst, [36]. Both, f and μ, vary with pressure. 

Specifically, the friction coefficient decreases if pres-

sure increases, according to a non-linear law, while the 

ratio between radial and axial pressures increases, fol-

lowing a nearly linear law. The results of compressibility 

test made on a high compressible iron powder, bulk-lu-

bricated with 0.6 % Zn stearate, may be useful. Fig. 9 

shows the experimental data and the calculated curve, 

by means of equation (3), at 400, 600 and 800 MPa. The 

equation of the curve is

Table 3 lists the physical and geometrical proper-

ties of the specimens pressed to plot the compressibility 

curve.

Fig. 10 shows the curves obtained using the relation-

ship (10) to plot the compaction density of a same powder 

mix, at different pressures, versus the K2 ratio between 

surfaces. Finally, Fig. 11 shows the curves of density for 

different values of K2. The upper curve is higher than 

that of compressibility measured according to the stan-

dard test conditions. As we can see, the compact geometry 

Table 3. Physical and geometrical properties of the small cylindrical compacts utilized to plot the compressibility 

curve of a high compressible iron powder, bulk-lubricated (0.6 % Zn stearate)

Pressure, 

MPa

Density, 

g/cm3
Volume, 

cm3
Springback, 

%

Diameter, 

mm

Area A, 

mm2
Height, 

mm

Area S, 

mm2 K2 ratio

300 6.500 10.769 0.09 25.023 491.76 21.90 1721.53 1.75

400 6.800 10.294 0.12 25.030 492.05 20.92 1645.08 1.67

500 7.030 9.957 0.15 25.038 492.35 20.22 1590.79 1.62

600 7.180 9.749 0.18 25.045 492.64 19.79 1557.09 1.58

700 7.285 9.609 0.21 25.053 492.94 19.49 1534.18 1.56

800 7.340 9.537 0.24 25.060 493.23 19.34 1522.23 1.54

Fig. 9. Results of compressibility test (high compressibility 

atomized iron, bulk-lubricated) and curve calculated by 

means of equation (3)
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may have a significant impact on the pressures required 

to reach a certain density. To relationships used to plot 

the various curves are: 

The relationship between radial pressure and axial 

pressure is based on the experimental results of G. Böck-

stiegel and J. Hewing [34] and E. Ernst [35, 36], later 

confirmed by other scientists. In all experimental re-

search on powder compaction, it has been found that the 

friction coefficient between densifying powder and tool 

surfaces, for mass lubricated mixes, decreases when the 

applied pressure increases, [35, 36].

Friction on punch face 

with circular cross-section

Repeated experiences have shown that in case of 

compaction of a cylinder of height much larger than the 

average size of powder particles, (indicatively > 1000 ti-

mes), the distribution of axial pressure is characterized 

by maximum values at the periphery and by one central 

area at nearly constant pressure, as schematically shown 

in Fig. 12. The different «motility» (the medical term 

«motility» appears apt to describe the possibility of dis-

placement) of particles constrained near confining tool 

surfaces can explain the observed pattern of axial pres-

sure distribution. In other words, the «degree of free-

dom» of particles far away from the compact «core» is 

reduced by the obstacles represented by die and punch 

surfaces. Differently, the powder granules at enough high 

distance from the confinement walls, especially vertical, 

are prevented from moving from their neighbor, equally 

stiff and resistant to plastic deformation. In these con-

ditions, the resistance, which opposes displacements, is 

smaller, with consequent reduction of axial pressure on 

the punch that compresses the powder. Obviously, such 

a distribution of axial pressures appears also within the 

wall thickness of hollow shapes, if the horizontal and 

vertical dimensions are higher enough, in comparison to 

powder particles. The pressure distribution substantially 

changes when the part thickness is modest in compac-

Fig. 10. Influence of K2 ratio on compaction density; 

high compressibility iron powder, bulk lubricated 

(0.6 % zinc stearate)

Fig. 11. Curves of compaction density for different values 

of K2 ratio; high compressibility iron powder, 

bulk lubricated (0.6 % zinc stearate)

Fig. 12. Distribution of axial pressure for big enough 

compact size
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tion direction. With similar geometries, the possibility 

of displacement of particles decreases, due to the «block-

ing» effect attributable to punch faces. To determine the 

distribution of axial pressure, when forming compacts of 

small height, we can consider the equilibrium conditions 

of an elementary powder volume on densification. For 

simplicity, let us suppose that the part shape is circular 

and that compaction is bilateral, simultaneous and sym-

metrical. Fig. 13 is the model used to find the relation-

ships for effects, [37].

With reference to Fig. 13, H is the thickness of the 

compact. The equilibrium condition of an ideally iso-

lated small quoin of powdered material, [33], is

  (11)

where f is the friction coefficient between punch faces 

and powder.

Both dr and dθ are sufficiently small, so as to neglect 

any variation of pressure, in the corresponding direc-

tions, on the horizontal faces of the small volume ele-

ment. Therefore, we can assume that it is sindθ = dθ. If 

we divide equation (11) for dθ we get

  (12)

which, dividing by r and H and changing the sign, can be 

rearranged in the form

  (13)

namely

  (13′)

For reasons of isotropy in the directions orthogonal 

to the action of the applied pressure, it may be assumed 

that, on any horizontal plane, it is σr = σθ. With this as-

sumption, equation (13′) becomes

  (14)

where: σr is the stress acting in radial or tangential direc-

tion, p is the pressure acting in axial sense; its value de-

pends on the considered point, i.e. on the position along 

a radius.

It can be now useful to repeat, as stated in [37], a 

short digression on the apparent contradiction between 

the dimensions of the elemental sector: two of them, dr 

and dθ, are infinitesimal, whilst the height H is finite. 

Furthermore, the considered geometry seems to contra-

dict, at least at first glance, what has been developed by 

A. Duffield et alii, [29], where the pressure variation in 

axial direction, between two horizontal planes placed at 

a short distance, dh, each other, has been expressly con-

sidered. Actually, for whichever horizontal plane inside 

the hardening powder mass, at a sufficiently high dis-

tance from the punch faces, the distribution of the axi-

al pressures can be approximated by a constant course. 

On the contrary, the friction between punch faces and 

powder univocally determines the axial pressure dis-

tribution. The law of variation in radial sense depends 

on several factors, among which the distance from the 

extremity horizontal faces certainly prevails. In the 

case of high axial thicknesses, clearly, the assumption 

of a constant radial pressure is unacceptable and, more 

correctly, it should be replaced by an integral function. 

Conversely, in the case of relatively modest heights, the 

variation of radial pressures in vertical direction can be 

Fig. 13. Stresses acting on a small elemental sector 

(H thickness) during powder compaction

Fig. 14. Ratios between minimum axial pressure 

(on the outer radius) and maximum axial pressure 

(at the disk center), according to equation (18)



Теория и процессы формования и спекания порошковых материалов

41Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya  4  2018

considered negligible. Therefore, the equilibrium condi-

tion expressed by (11) can be allowed, provided that the 

H height is small enough. A proportionality relationship, 

[33—36], links radial and axial pressure (having the lat-

ter a specific value): 

pr = μpa (with μ = μ(pa) < 1 and μ = μ(pa)).  (15)

Therefore, remembering also the equality between 

stresses and local pressures, formula (14) may be modi-

fied as follows:

  (16)

and again, simply indicating with p the axial pressure 

acting on the small element of the area,

  (16′)

namely

  (16′′)

The indefinite integral of equation (16′′) is

  (17)

which, transforming the logarithm in a power expres-

sion, gives

  (18)

where p is the axial pressure which acts on the powder at 

a distance r from the center of the figure, p0 is the axi-

al pressure acting on the center of the compaction area, 

that is for r = 0.

If we now introduce two dimensionless parameters, 

one of physical in nature, M1 = 2f/μ, and one of geomet-

rical nature, M2 = r/H, the equation (18) can be written as

p = p0exp(–M1M2).  (18′)

The equations (17) and (18) indicate that the axial 

pressure on the faces of the powder mass on densifica-

tion decreases along the radius, following a logarithmic 

law. The maximum value appears at the center, whereas 

the minimum value occurs on the circumference. The 

gradient of pressure, in radial direction, depends on:

• friction coefficient between punch faces and pow-

der on densification;

• ratio between radial and axial pressure;

• geometry of the part.

It may be useful to remark that the dimensionless pa-

rameter M1 is formally the inverse of the dimensionless 

parameter K1 found in the analytical evaluation of the ef-

fect of friction between powder mix on densification and 

confining die walls. However, we should consider that 

the lubrication conditions and possibilities of movement 

of powder particles, in the two cases, are substantially 

different.

The geometric parameter, M2, is instead a ratio be-

tween two lengths. M2 also turns out to be the inverse of 

K2 parameter, previously found. Eq. (18) enabled to plot 

the graph of Fig. 14 . The two quantities f and μ vary, 

with different laws, as functions of the compaction pres-

sure. The stronger variation regards the friction coeffi-

cient, for bulk-lubricated powders mass: it can decrease 

from 0.2 to less than 0.05 as p increases, while, in the 

same range, m increases from about 0.5 to almost 0.7, 

[34, 36, 37]. Any effort to identify limitations and inac-

curacies arising from the assumptions here made would 

require some specific investigation, on disks with diffe-

rent thin thickness and under different lubrication con-

ditions of the punch faces. In addition, to take account 

of any change of friction coefficient, the experimental 

verifications should be repeated at different pressures. 

Independently of any targeted experimental investiga-

tion, it is notoriously difficult to comply with flatness 

tolerances on the faces of thin disks, which systemati-

cally tend to bulge at the center (few hundredths of a 

millimeter). The observed bulges replicate the different 

local elastic yielding of punches, coming from diffe-

rence among local stress levels. By way of example, in 

the case of a 32 mm diameter and 2 mm height disk, the 

r/H ratio is 8.0. Assuming an average value of the f/μ ra-

tio, according to the graph of Fig. 14, the axial pressure 

acting on the outermost zone is equal to nearly 30 % of 

that acting on the center, to drop to less than 1 % if r/H 

becomes equal to 20.

Axial pressure distribution 

in the case of circular shapes 

If F indicates the force applied on compaction by 

the upper (and lower) punch, the average axial pressure, 

pm, acting on a small disk with a radius at compaction 

end is

  (19)

More, if we consider that the axial pressure varies 

along a radius, it should be

  (20)
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and also

  (21)

If we insert in Eq. (21) the expression of local pres-

sure given by Eq. (18) and divide by π, we get 

  (22)

that, remebering the definition of M2, becomes 

  (22′)

Only for formal simplicity, let us write

b = M1/H.  (23)

Then, from (22), we have

  (24)

and also

  (25)

The integral of the second term of (25) may be solved 

as follows

  (26)

namely

  
(26′)

If we insert the solution of the integral given by (26′) 

in (25), remembering that it is bH = M1 and indicating 

by M2max the value corresponding to the outside radius 

of the disk, we get

  (27)

This formula establishes the relationship between 

average and maximum pressure, which acts on the 

center of the disk. By analogy with the indications gi-

ven by formula (19), at equal average pressure, the ma-

ximum value depends on compact geometry and fric-

tion coefficient.

It may be interesting to try to see graphically how 

the maximum pressure at the center of the disk varies as 

a function of M1 and M2 values. The trends are plotted 

in Fig. 15, which shows that the maximum calculated 

pressure at the center of the disk strongly increases as the 

thickness/radius ratio decreases.

The influence of the M1 ratio (M1 = 2f/μ) is remark-

able: at the same M2max, (M2max = a/H, a being the out-

er radius of the «thin» disk), the value of the maximum 

pressure at the center could theoretically increase, to be-

come 4 or 5 times greater than the average one. It should 

also be noted that M1 values lower than 0.4 have been 

considered, remembering that friction coefficient de-

creases at increasing pressure on bulk-lubricated pow-

der. 

Obviously, the curves of Fig. 15 cannot describe re-

al situations, since it should be assumed that the most 

heavily loaded areas of the punches deforms elastically 

and tend to involve the adjacent ones, less stressed, with 

a tendency towards reduction of the differences between 

local stresses.

The lenticular-type deformations usually observed 

on thin plates or disks, as already mentioned, appears as 

Fig. 15. Variation of the maximum pressure, 

at the center of a thin disk, as a function of the ratio 

between radius and height (or thickness)

Fig. 16. Position of r* radius, (r* = r/a), where the axial 

pressure is equal to the average one, function 

of the thickness of a «thin» disk having a radius
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an indirect confirmation of this hypothesis. For a spe-

cific radius r*, (0 < r* < a), the axial pressure should have 

(on a specific radius) the same value of the average one, 

given by (22). According to (19), (21) and (22), when it is 

r = r*, it should also be:

  (28)

If we insert in Eq. (28) the expression of p0 given by 

(27), after elimination of the exponential we get 

  (29) 

This formula defines the variation law of the position 

of r*, due to changes of physical and geometrical quanti-

ties involved. As Fig. 16 shows, the r* radius tends to ap-

proach the part center when friction coefficient increas-

es and thickness of the disk decreases. The variation 

range, anyhow, is relatively modest: from 0.54 to 0.66. 

Only by way of example, let us suppose that the f latness 

defect observed on a 30 mm diameter disk is 0.05 mm. 

This deformation, on a 100 mm long punch, corres-

ponds to a difference between axial stresses of the or-

der of 100 MPa. This value allows to assume that, as a 

result of different local elastic yielding of the punches, 

the effective radius of the area in which the local pres-

sure is greater than the average is significantly larger 

than r*. As a first approximation, in absence of other 

indications, we imagine to split into two equivalent 

areas the annulus defined by the radii r* and a, and sup-

pose that the area subject to local axial pressure greater 

than or equal to the average one includes the circle of 

radius r* and half of the outside area. On the basis of 

the bundle of curves of Fig. 17, we can admit that, for a 

3 mm thick disk, on the average, it is r* = 0.62a. In this 

case, the formal expression of the assumptions made, 

for r = 1.00 mm, is

  (30)

This area corresponds to 69 % of the total surface. 

If we accept the proposed hypotheses, we can conclude 

that the «effective» pressure acts on an area that is ap-

proximately equal to 70 % of the total. Case by case, the 

curves of Fig. 16 allow obtaining less approximate indi-

cations. 

As shown in Fig. 17, as the a/H ratio increases, i.e. 

as the relative thickness of the disc decreases, the r* ra-

dius tends towards the center, with a linear law. In this 

way, also the area that we can consider «effective» for 

powder densification, i.e. the area where the local axi-

al pressure is equal to or greater than the average one, 

decreases.

Decrease of average density 

of thin disks

Within the explored fields, (M1 and M2max variab-

les), the ratio between the area that can be considered 

effective for densification and the total one varies bet-

ween 0.65 and 0.71. Given the modest variation, we 

can assume that the «effective» compressibility curves 

move downward, in comparison to the standard ones, as 

Fig. 18 shows. In other words, this corresponds to ad-

mit that, in the case of thin plates or disks, the real be-

havior of the powder in densification is worse than the 

standard, as if the powder becomes less compressible. 

Fig. 17. Position of the radius on which the local axial 

pressure is equal to the average one, as a function 

of M2max ratio

Fig. 18. Standard compressibility curve and «effective» 

compressibility curve for compacting low-thickness plates 

and disks
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In Fig. 18, the compressibility curve that we can define 

«effective» is unique, but, in reality, given the effects of 

M1 and M2, we can imagine the existence of a bundle of 

«actual» compressibility curves, spaced apart in depen-

dence of friction coefficient and thickness/radius ratio. 

Another reason for the decrease of the average density 

of thin disks (or plates) derives from the presence of two 

«boundary layers», within which the density increases 

gradually proceeding towards the interior. These boun-

dary layers, generated by reduced motility of particles 

directly in contact with the punch faces, have thickness-

es depending on average particle size of the used powder, 

as found by G.F. Bocchini, [38]. Their effect on the ave-

rage density is greater as the thickness of disk decreases. 

The presence of a boundary layer less dense than the ave-

rage for the particular involves a whole series of possible 

consequences on the mechanical behavior in operation 

of sintered parts. The analysis of this aspect, however, is 

beyond the scope of this work.

Support 

of experimental data

This theoretical study is not corroborated by any 

joint experimental investigation on density variations of 

compacts (and/or sintered parts) attributable to typical 

geometries and influenced by negative effects of fric-

tion resistance at tool walls. In the literature, however, 

there are some indications that agree with the assump-

tions and analytical developments here outlined. Fig. 19, 

for instance, shows a graph based on the data published 

by G. Mair, [39], who measured, by slices, the density 

distribution of cylindrical bushings (16 mm nominal 

height), obtained by unilateral compaction of a high 

compressibility iron powder, bulk-lubricated with 1 % 

micronized wax. On the same figure there is the ideal 

line corresponding to a correct (symmetrical) compac-

tion. On the figure, each dot indicates the density of a 

small height ring, cut at a given mean distance from 

the end face formed by the punch. As we can observe, 

the density decrease in axial direction shows a linear 

trend. In the same work, Mair presents other graphs, 

relating to bushes of different geometry, which con-

firm the dependence of the local density and — conse-

quently — also on the average one, from the geometric 

parameter K2. Furthermore, in the case of very high 

compaction pressure (between 810 and 920 MPa), 

other conditions being equal, the gradients of the 

curves of local density decrease, as the pressure in-

creases, for a sort of «saturation» effect. In other words, 

at very high density the effect of pressure increases on 

density variations progressively decreases. The reason 

is that the more dense zones have very limited possi-

bility, if any, of further densification. For most metals, 

any compressibility curve shows some trend to f latten 

as pressure increases.

G.F. Bocchini et alii, [40, 41], published a series of 

experimental results, obtained in a study made to con-

firm — or reject — the conclusions of a theoretical study 

on friction effects during compaction, [37]. The research 

investigated the possible density decreases of thin com-

pacts vs. their thickness, on small discs as specimens 

(Ф = 25 mm, high or normal compressibility iron pow-

der), with different lubricants and lubrication type. The 

green disks were presintered, to remove lubricants and 

to get a mechanical strength of samples compatible with 

the preparation of metallographic specimens, for strati-

graphic observation and assessment of porosity gradi-

ents. The average density was measured by Archimedes’ 

method. Fig. 20 and 21 show the density distribution of 

presintered disks, for 5 different lubrication conditions. 

On each case, the curves seem reach a horizontal trend 

as K2 is > 0.5. It is also interesting to observe the effect 

of wall lubrication, with a remarkable density increase 

in the range 0.1 < K2  0.4. In the same investigation, 

G.F. Bocchini et alii, [40, 41], measured, by image ana-

lysis, the porosity variations vs. the distance from the 

face formed by a punch. Fig. 22 shows the results of those 

evaluations for disks obtained from atomized iron pow-

der. The results obtained on samples based on sponge 

powder were similar. In both cases, within a very thin 

layer, proceeding from the outer surface towards the 

Fig. 19. Density distribution, in axial sense, of a iron 

bushing 16 mm high, uniaxially compacted. On the right, 

ideal line, corresponding to bilateral compaction, 

with K2 = 16 (from G. Mair [39], redrawn)
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part interior, the porosity decreases. As we can see, the 

boundary layer extends inward to about 0.3 mm. We 

should remember that the average size of a typical gra-

nule of atomized iron powder is about 0.1 mm. This 

trend, which any careful check on green or sintered 

parts can easily confirm, seems support the hypothesis 

of boundary layers formed on compaction and attributa-

ble to reduced local «motility» of powder particles, con-

strained by punch faces.

Conclusions

The pressure distributions during metal powder 

compacting, on die and punch faces, have been deter-

mined by simple geometrical models. The pressure drop 

increases as friction coefficient between powder mixes 

and tool surfaces increases. Uneven pressure distribu-

tions cause a decrease of average compact density, in 

comparison with the values drawn from standard com-

pressibility curves.

In fact, since density increases, as compaction pres-

sure increases, according to a non-linear law, if the axial 

pressure is uneven, the corresponding average density 

will be lower than that ideally obtained in case of con-

stant pressure. 

The analytical study on density decrease of compacts 

having relatively small thickness has allowed the formu-

lation of equations relating average density and geomet-

ry. Two dimensionless parameters, K2 and M2, which 

depend on the areas of compaction surface and side 

surfaces (die confining surface, and punch surfaces act-

ing as die) affect pressure and density distributions. In 

case of part shapes strongly different from the standard 

specimens, the gap between indications given by usual 

curves and actual powder behavior may reach dangerous 

levels. The actual pressure differences may be so high as 

to imperil the integrity of some tool items or even press 

components. If the compact shapes are similar to thin 

disks or plates, a further decrement of the average den-

sity occurs, in comparison with standard curves, which 

depends on the presence of boundary layers with vary-

ing density. These boundary layers are always present, 

but their relative weight increases as part thickness de-

creases. More, if the parts have a small axial thickness 

and a relatively large compaction area, the axial pressure 

gradients may lead to flatness defect. According to the 

theoretical approach, such parts should always present a 

lenticular shape, with thickness difference increasing as 

thickness decreases. This result seems to explain some 

quality problems regarding flatness tolerance of thin 

parts. 

Fig. 22. Trend of porosity, inside thin surface layers, 

of presintered thin disks. Atomized iron powder, 

bulk-lubricated or with wall lubrication 

(from G.F. Bocchini et alii [40, 41])

Fig. 20. Average density of presintered thin disks versus 

the geometrical parameter K2. Sponge powder (NC 100.24, 

from Höganäs AB); Compaction pressure 600 MPa 

(from [41, 42])

Fig. 21. Average density of presintered thin disks versus 

the geometrical parameter K2. Atom. powder (ASC 100.29, 

from Höganäs AB); Compaction pressure 600 MPa 

(from [41, 42])
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Since the standard compressibility curves appear 

unsuitable to assess the compaction behavior of metal 

powders for different shapes, calculation methods suit-

able to plot approximate compressibility curves are pre-

sented. In conclusion, the answer to the dilemma of the 

title may be only one: the standard curves are useful to 

compare different powders, but are definitely unsuitab-

le — or even dangerous — for any reliable forecast of 

stress levels actually acting on various elements of com-

paction tools.
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