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Abstract. 3D printing, also known as additive manufacturing (AM), represents a rapidly evolving technological field capable of creating
distinctive products with nearly any irregular shape, often unattainable using traditional techniques. Currently, the focus in 3D printing
extends beyond polymer and metal structural materials, garnering increased attention towards functional materials. This review conducts
an analysis of published data concerning the 3D printing of magnetic materials. The paper provides a concise overview of key AM tech-
nologies, encompassing vat photopolymerization, selective laser sintering, binder jetting, fused deposition modeling, direct ink writing,
electron beam melting, directed energy deposition and laser powder bed fusion. Additionally, it covers magnetic materials currently utilized
in AM, including hard magnetic Nd—Fe—B and Sm—Co alloys, hard and soft magnetic ferrites, and soft magnetic alloys such as permalloys
and electrical steels. Presently, materials produced through 3D printing exhibit properties that often fall short compared to their counterparts
fabricated using conventional methods. However, the distinct advantages of 3D printing, such as the fabrication of intricately shaped indi-
vidual parts and reduced material wastage, are noteworthy. Efforts are underway to enhance the material properties. In specific instances,
such as the application of metal-polymer composites, the magnetic properties of 3D-printed products generally align with those of tra-
ditional analogs. The review further delves into the primary fields where 3D printing of magnetic products finds application. Notably, it
highlights promising areas, including the production of responsive soft robots with increased freedom of movement and magnets featuring
optimized topology for generating highly homogeneous magnetic fields. Furthermore, the paper addresses the key challenges associated
with 3D printing of magnetic products, offering potential approaches to mitigate them.
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AHHoTayms. 3D-nievath, WK aAAUTHBHOE MPOU3BOACTBO (AIl), — 3TO aKTUBHO Pa3BUBAIOLIASCS 00TACTh TEXHHUKH, TO3BOJISIFOLIAS U3T0-
TaBJINBATh YHHKAIbHBIC M3CIHs MPAKTHYCCKH JI000H CI0KHOI (HOPMBI, KOTOPYIO 3a4acTyI0 HEBO3MOXKHO IMOJYYUTH TPAIUIHOH-
HBIMH TEXHOJIOTHSAMH. B HacTosmee BpeMst TOMUMO padoT ¢ M3SIUSAMHI U3 TOTMMEPHBIX M METAJUIMUCCKUX KOHCTPYKIIMOHHBIX MaTe-
pHuasioB BOCTpeOOBaHHOM Takke cTaHOBUTCS 3D-meuars u3aennii u3 QyHKIMOHAIBHBIX MaTepuajioB. B taHHOM 0030pe npeacTaBieH
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aHaJIN3 JINTEPATYPHBIX JaHHBIX 10 3D-revaT U3Aeauii U3 MarHUTHBIX MarepuaioB. KpaTko paccMOTpeHBI OCHOBHBIC TEXHOJIOTHU
AIl — porononumepu3zanysi B BAHHE, CEIIEKTUBHOE JIa3epHOE CIIEKaHUEe, CTPYHHOE HAHECEHHUE CBS3YIOIIET0, MOACIMPOBAHUE METOJIOM
HATJIABJICHUS, IPSIMOE HalMCaHUe YePHUIAMHU, IICKTPOHHO-ITyYeBast IU1aBKa, MPSIMOH T0/IBOJI SHEPIHUH U MaTepHalia, CHHTE3 Ha 10JI-
JIOXKKE C TIOMOIIBIO JIa3epa, a TakKe UcrosibdyeMble B AIl MarHuTHbIe MaTepralibl — MarHuToTBepabie criaBbl Nd—Fe-B u Sm—Co,
MarHUTOTBEPAbIC 1 MATHUTOMATKHE ()EPPHUTHI, MATHUTOMSITKUE CILIABBI THUIIA TIEPMAIUIOEB U AJIEKTPOTEXHUYeCKUX crajei. [Tokasano,
YTO HA JAHHBI MOMEHT MaTepualibl, U3TOTOBJICHHbIE MeToamMu 3D-redaTu, Moka yCTymnalT MO CBOMM CBOWMCTBAM aHAJOIMYHBIM
MarepuaiaMm, IoJIy4eHHbIM 0oJiee TPaJULMOHHBIMU METOJaMM, OJIHAKO OCHOBHbIE IpeumyniecTsa 3D-nevatu — co3naHue euHuy-
HBIX M3JICJIUN CIIOXKHON (POPMBI M COKpAIIIEHUE OTXOI0B MaTepHalia, IPu 3TOM BeIyTcs pabOoThI 10 yIyUIICHHIO KOMIUIEKCa CBOUCTR.
B HEKOTOpBIX Cilydasx, HAIPUMEP MPU MCIOIb30BAHUU METAIUI-TIOJMMEPHBIX KOMITO3UIIHi, MATHUTHBIC XapakTepucTuku 3D-u3me-
JIMH U3 HUX B LEJIOM yXK€ CONOCTaBUMBI C TPAJUIIMOHHBIMU aHaJloraMu. B 0030pe npuBeieHbl OCHOBHBIC HANIPABICHUS IPUMEHEHUS
3D-neyaTy MarHUTHBIX U3/EJIHIH — B YaCTHOCTH, [IOKA3aHO, YTO BEChbMa MEPCHEKTUBHO U3rOTOBIIEHHE MITKUX POOOTOB € OBICTPBIM
OTKJIMKOM M BBICOKO# CTEIIEHBIO CBOOO/IBI, & TAK)KE MArHUTOB C ONITHMHU3UPOBAHHON TOTIOJNIOTHEH, TO3BOJISIFOIIUX T€HEPUPOBATh Mar-
HUTHOE TI0JIC C BBICOKOH CTENEHBIO OJHOPOAHOCTH. Taike MpPEeACTaBICHbI OCHOBHBIC MPOOiIeMbl 3D-reuaTn MarHUTHBIX HU3JCIUI

U BO3MOKHBIE CITOCOOBI X peuienus.

KnioueBbie cnoBa: 3D-HC‘IaTL, AAIUTUBHOC IMTPOU3BOACTBO, aAAUTUBHBIC TEXHOJIOTUH, MATHUTHBIC MaTCpUaJibl

BbnaropaapHocTh: [lanHas paboTa Obliia BBIIONHEHA IpU mojiepskke Poccuiickoro Hayunoro gonza (rpant Ne 23-13-00305).

Ansa untnposanusa: Konos I A., Maszeesa A K., Macaiino /1.B., Pazymos H.I", [TonoBuu A.A. O630p 3D-neuaru nuznenuii 13 MarHUTHBIX
MAaTepUaIOB: BUJIbI, IPUMECHEHHUE, TOCTHKCHUS U PoOIeMbl. M3gecmust 8y306. [lopowkosas Mmemainypeus u QyHKYUOHAIbHbLE NOKDbI-
musi. 2024;18(1):6-19. https://doi.org/10.17073/1997-308X-2024-1-6-19

Introduction

Magnetic materials are capable of generating their
own magnetic fields and are widely used in various elec-
trical devices [1-3], such as generators, transformers,
magnetic recording systems, and other units with spe-
cific geometries and architectures. Traditional methods
for manufacturing such products are limited to simple
shapes, requiring expensive tools and sophisticated
post-processing. This pushes up the costs of low-volume
production of unique items and leads to considerable
waste. Consequently, an increasing number of studies
are devoted to the development of new technologies,
including 3D printing.

3D printing enables the creation of arbitrarily-
shaped structures with complex geometries using a vari-
ety of materials, including polymers [4; 5], metals [6-8],
ceramics [9—11], composites [12—14], etc. This techno-
logy allows for reduced production time, lowered costs,
controlled shapes, printing with multiple materials, and
the production of structures that were previously impos-
sible to obtain using traditional methods. The capabili-
ties of 3D printing technology offer tremendous opportu-
nities for manufacturing magnetic materials with irregu-
lar shapes, simultaneously reducing waste and enabling
the creation of unique products unattainable through
traditional methods. Further studies on materials and
processes are required to fully explore the potential
of 3D printing in manufacturing magnetic materials.

The aim of this paper is to review published works
pertaining to the additive manufacturing of magnetic
materials. It will specifically explore the 3D printing
technologies employed for this purpose, the applica-
tion scope of materials produced through this method,

the potential and accomplishments of additive technolo-
gies in this domain, and finally, it will address current
challenges and the prospects for their resolution.

1. 3D printing technologies
for manufacturing
magnetic materials

A variety of technologies and materials are employed
in the additive manufacturing of magnetic materials
using 3D printing. Some of these techniques are dis-
cussed below.

Vat photopolimerization [15;16] (Fig. 1, a) is
a 3D printing technology that uses liquid polymers as
initial materials along with a laser, projector, or liquid
crystal display as a radiation source.

Stereolithography apparatus (SLA) technology
operates by using a laser to illuminate photopolymer
resin in the printer vat through point-by-point scan-
ning. The laser beam targets the vat’s bottom and, via
mirror galvanometers, illuminates specific regions
based on the developed 3D computer model of the pro-
duct. This process forms a cured layer corresponding
to the specified cross-section of the model. The platform
then rises by the thickness of one layer, and the proce-
dure repeats until the product is fully printed.

Digital light processing (DLP) technology [17]
employs projectors to solidify photopolymer resin
into three-dimensional objects. It simultaneously
exposes the entire resin layer to optical range radiation,
curing the entire layer with a single exposure, elimina-
ting the need for scanning procedures. Digital micromir-
ror devices (DMD), consisting of thousands of micro-
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Fig. 1. Vat photopolymerization method [21] (a) and SLS method [22] (b)
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mirrors, control the reflection of light onto the resin
surface, allowing the creation of images using pixels
and voxels similar to conventional 2D or 3D cameras.

Photopolymerization can also be accomplished
using a liquid crystal display (LCD) [18-20]. LCD
printers, unlike the projection method, lack mirrors
and instead employ powerful LCD panels. LEDs shine
light onto the model, with the LCD panel blocking light
in regions where photopolymer solidification is not
needed. Only the necessary regions permit light to pass
through onto the finished part. This approach simplifies
the printing process, eliminating the need for mirrors
or galvanometers. DLP and LCD technologies expe-
dite the printing process, although the achievable level
of detail is slightly lower compared to SLA.

Vat photopolymerization is known for its high accu-
racy and excellent feature detail, making it a preferred

Adhesive cartridge .
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Leveling
device

/

Chamber

i'
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B
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choice for manufacturing small complex parts, proto-
types, and models. In this method, magnetic materials
are obtained using magnetic fluid or ink.

Selective laser sintering (SLS) [15; 12-24]
(Fig. 1, b) is a method that employs a laser to sinter
powder. Unlike the vat photopolymerization method,
SLS uses powders from specialized reservoir instead
of liquid materials. The laser sinters the powder, for-
ming a solid surface that corresponds to the specified
cross-section based on the pre-designed 3D model.
In the manufacturing of magnetic products via the SLS
method, magnetic powders are used as the feedstock
materials.

Binder jetting (BJ) [25-29] (Fig. 2, a) is an addi-
tive manufacturing process that involves depositing

a liquid binder onto a layer of powder to selectively
bind its particles. The powder layer is then densified,
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Fig. 2. BJ method [33] (a) and FDM method [34] (b)
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and the process is repeated layer by layer until the part
is fully fabricated. The unbound powder is removed,
leaving the fabricated part behind. In order to print
magnet materials by this method, magnetic particles are
mixed with a binder during the printing process.

Fused deposition modeling (FDM) [29; 30]
(Fig. 2, b) is a type of 3D printing based on deposit-
ing plastic material, usually thermoplastic polymers,
onto existing layers. The filament is fed into a heated
nozzle where it melts and is deposited onto the assembly
platform in the exact order determined by the 3D model,
thus creating layers of material that cool and solidify
to form a part of the desired shape. Special compo-
site filaments containing magnetic particles are used
to manufacture magnetic materials.

Direct ink writing (DIW) [31; 32] (Fig. 3) repre-
sents one of the 3D printing techniques capable of pro-
ducing intricate structures with exceptional accuracy

Degree of freedom

Beam of electrons

Mechanism

for feeding wire Molten alloy

Previous layer
Substrate

and detailed features. The DIW method utilizes mate-
rials in the form of liquid paste (Fig. 3, a), that is subse-
quently solidified during post-printing. The solidifica-
tion occurs either through water evaporation, in the case
of a water-based binder, or via polymerization induced
by exposure to high temperatures around 100 °C
or a UV source. Various methodologies exist for gover-
ning the shape and properties of the printed materials,
one of which involves the application of a magnetic
field (Fig. 3, »). Employing a magnetic field allows for
the deliberate orientation of material particles, enhan-
cing magnetic properties and facilitating precise control
over the shape of the printed products.

Electron beam melting (EBM) (Fig. 4, a) [25; 32;
35;36] is a printing method that utilizes an elec-
tron beam to fuse metal powders into a three-dimensional
part. In the EBM process, an electron beam is generated
within a vacuum chamber and directed at the powder

Printing direction

) Powder flow
Deposited
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Molten pool
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Fig. 4. EBM method [37] (a) and DED method [38] (b)
Puc. 4. Metonst EBM [37] (@) u DED [38] (b)
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bed, causing the powder to melt. Metal parts are fabri-
cated using this method. Powders containing magnetic
particles are employed to create magnetic materials.

Directed energy deposition (DED) (Fig. 4, b)
[32; 39; 40] is a printing method that employs a laser
or plasma to fuse metal powders and create three-
dimensional parts. In the DED process, the material is
heated until it begins to melt, and its controlled flow
is fused with the layer below. This printing method
is well-suited for fabricating parts made of metal and
ceramics. In order to produce magnetic materials using
this method, powders containing magnetic particles are
used as feedstock materials.

Laser powder bed fusion (L-PBF) [15;22; 32]
(Fig. 5) is a technique similar to the SLS method.
However, in this case, the laser is not utilized for sinter-
ing but for powder melting.

2. Overview of magnetic
materials
in additive manufacturing

Magnetic materials [42; 43] are commonly classi-
fied into two groups: hard and soft magnetic materials.
This classification depends on the material’s coercive
force (H,). Soft magnetic materials possess a coercive
force lower than 4 kA/m, whereas hard magnetic mate-
rials have a coercive force higher than 4 kA/m. Soft
magnetic materials are often employed in manufactur-
ing transformer cores, magnetic shields, microwave
devices, and so on, while hard magnetic materials find
application in producing permanent magnets, various
Sensors, an so on.

Laser

Optics
.

2.1. Soft magnetic materials

Soft magnetic materials [42—44] possess the ability
to magnetize and demagnetize easily. They exhibit low
coercive force (H ), resulting in lower losses associ-
ated with magnetization reversal. These materials are
well-suited for applications requiring rapid changes
in magnetic fields. Additionally, soft magnetic materi-
als should often possess high saturation induction (B,)
and high magnetic permeability, even at high frequen-
cies. They find usage in diverse devices such as electric
motors [45; 46], transformers [47; 48], magnetic sen-
sors [49], and magnetic shields [50; 51].

Permalloys [52; 53] constitute a group of iron-
and nickel-based alloys with high magnetic permea-
bility. They serve as the foundation for numerous
parts in electrical equipment. Permalloys have wide-
spread industrial applications, including the produc-
tion of motors, generators, inductors, transformers,
and other devices. Due to their magnetic properties,
permalloys can be effectively employed in 3D prin-
ting to fabricate intricate magnetic structures. For
example, in [52], 3D printing with L-PBF was utilized
to directly manufacture permalloy magnetic shields
based on Ni—Fe fiber-optic gyroscopes in spacecraft.
Comparative evaluations of the soft magnetic proper-
ties of printed Ni—15Fe—5Mo permalloy, with and with-
out annealing, demonstrated similarity to traditionally
processed permalloy parts, indicating the feasibility and
applicability of the L-PBF method.

Fe-Si electrical steels (with varying proportions
of iron and silicon, e.g., 6.9 % Si) [54] exhibit high
magnetic permeability, low coercive force, and high
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electrical conductivity. These characteristics make them
suitable for diverse fields such as electronics, automo-
tive, and microelectronics. The L-PBF method in addi-
tive manufacturing can produce magnetic components
like toroids, transformer cores, magnetic conductors,
and other elements using these alloys [54].

Soft magnetic ferrites (such as NiFe,O,, Fe,O,,
Ni—Zn and Ni—Zn—Cu ferrites) are used in manufactur-
ing transformer cores, elements of microwave devices,
and as magnetic fillers for producing soft robots and
manipulators.

2.2. Hard magnetic materials

Hard magnetic materials [32; 55-59] retain a strong
magnetic field even without an external magnetic force
and are commonly used in manufacturing permanent
magnets. These materials are challenging to magnetize
but can retain their magnetization after the external
magnetic field is removed. Essential characteristics
for such materials include high values of H_, B, and
maximum magnetic energy product (BH) . They
find applications in producing items requiring a con-
stant strong magnetic field, such as motors, generators,
magnetic storage devices, and various sensor types.
Common materials utilized for fabricating permanent
magnets include alloys based on the Nd-Fe-B and
Sm—Co systems, along with hard magnetic ferrites.

Nd-Fe-B magnets [60-62] are known for their
exceptional magnetic performance and possess a high
energy density, enabling the generation of intense
magnetic fields. These magnets are highly sought after
in electronics, electromechanics, and medical equip-
ment. Conventionally, magnets based on the Nd-Fe—B
system are manufactured by sintering a blank pressed
from initial powder, followed by infiltration with a low-
fusible alloy based on the Pr—Cu system to enhance
coercivity. In [63], the authors proposed applying
the L-PBF method to a mixture of Nd—Fe-B powder
and eutectic alloy powder (Pr, Nd,;),(Cu,,.Co )
to obtain a magnet with Nd,Fe,,B magnetic grains and
a non-magnetic intergrain layer in a single manufac-
turing operation.

However, a distinctive feature of 3D printing using
metallic materials, especially Nd—Fe-B magnetic
alloys, is porosity. This arises due to both insufficient
injected radiation energy causing lack-of-fusion zones
and excessive energy leading to intense metal evapo-
ration in the laser beam zone. By varying laser
power and scanning speed using L-PBF technology,
the authors [64] identified optimal modes to ensure
the stability of the Nd—Fe—B-based alloy melting pro-

cess and obtain high-quality fused track for competitive
permanent magnet fabrication.

The Nd-Fe—B-based magnets produced by metallic
3D printing methods are also prone to cracking and brit-
tleness. In [65], the double scanning method was pro-
posed, involving scanning each layer twice — initially
with full laser power and then with half the power. This
approach, involving partial remelting of the already
deposited layer, resulted in denser samples with fewer
defects in the form of pores and cracks, thus preventing
their destruction when separated from the substrate.

Polymer-bonded magnets [66; 67] consist of poly-
mers infused with magnetic particles, typically ferrites
(such as SrFe|,0,,, BaFe,,0,, CoFe,0,). While they
possess lower energy compared to traditional sintered
iron, nickel, or cobalt-based magnets, polymer-bonded
magnets serve purposes where a lightweight and
flexible magnetic solution is required. Moreover, they
are relatively cost-effective and easy to manufacture.
The utilization of 3D printing for producing ferrite-
based magnets offers numerous advantages. It allows
the creation of magnets in diverse sizes, shapes, and
intricate geometries that might be inaccessible via tra-
ditional methods.

A prevalent technique for fabricating ferrite-
based magnets using 3D printing involves extruding
the material while applying an external magnetic
field. During this process, molten plastic is dispensed
through a nozzle onto a special platform, and an exter-
nal magnetic field — created using a permanent magnet
or a current-carrying coil — is directed at the com-
posite of polymer and magnetic particles. This field
aligns the magnetic particles in the polymer, resulting
in an anisotropic magnet when the polymer cools and
solidifies.

These magnets find widespread applications in work
surfaces, storage devices, magnetic toys, and can even
be customized into specific shapes like logos.

Currently, polymer-bonded magnets [68—70] are
gaining attention in industries due to their comparable
magnetic properties (in contrast to traditional pressing
and injection molding methods), mold flexibility, low
cost, and acceptable mechanical properties [71; 72].

The manufacturing of magnets has shifted from
traditional pressing and injection molding techniques
to the widespread utilization of 3D printing methods.
An illustrative instance is the application of the BJ
method, used to 3D print isotropic magnets based
on polymer-bonded Nd-Fe-B. These magnets were
shaped using initial materials of approximately 70 um
particles [26]. Upon completion of the printing process,

il
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the resulting green model underwent curing at tem-
peratures ranging from 100 to 150 °C. Subsequently,
the surface underwent infiltration with urethane resin,
achieving a magnet density of 3.47 g/cm?. This den-
sity corresponds to 46 vol. % of the Nd—Fe-B density
(7.6 g/cm?®). 1t’s noteworthy that the residual induc-
tion of the magnet samples produced by binder jet-
ting, reaching approximately 0.3 T, aligns closely with
residual induction values of 0.5 and 0.65 T typically
achieved in standard isotropic magnets through con-
ventional pressing and injection molding methods [26].
Furthermore, this approach enables precise control
of the magnetic characteristics during the printing pro-
cess, leading to maximum efficiency gains.

Sm—Co magnets [73] possess notably high coercive
properties, trailing only behind NdFeB-based magnets
in terms of their characteristics. They prove advanta-
geous in 3D printing applications, particularly in sce-
narios requiring high-temperature resistance. These
magnets, based on the Sm—Co system, often consist
of multiple components, incorporating elements such as
Fe, Cu, and Zr. Notably, they exhibit a high energy den-
sity, exceptional temperature stability, and resilience
to mechanical stresses. These distinctive traits render
Sm—Co magnets indispensable across various industrial
fields, spanning from medical devices to electronics and
the automotive industry.

However, the conventional manufacturing pro-
cess for Sm—Co magnets is notably expensive and
labor-intensive, thereby posing challenges for smaller
manufacturers to affordably engage in production. This
issue finds a potential solution through the applica-
tion of 3D printing technology. Employing 3D printing
for the fabrication of Sm—Co magnets offers a signifi-
cant advantage in cost reduction, particularly when pro-
ducing magnets in smaller batches.

Despite its numerous advantages, utilizing 3D print-
ing techniques like L-PBF for fabricating Sm—Co mag-
nets presents certain drawbacks. Notably, the magnets
produced through this method often exhibit relatively
low mechanical strength, potentially limiting their
application in specific sectors, particularly within avia-
tion and marine transportation industries. Nevertheless,
the realm of 3D printing Sm—Co alloys holds immense
promise and signifies a compelling avenue for the future
development of magnetic material production. The pros-
pect of reduced manufacturing costs while maintaining
quality and productivity, alongside the capacity to fab-
ricate more intricate products, positions the 3D printing
of Sm—Co magnets as a prospective mainstream indus-
trial method [74].
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Hard ferrites [75; 76], also referred to as ceramic or
ferrite magnets, represent a class of permanent mag-
nets composed of iron oxide and ceramics (BaFe ,0
SrFe ,0,,, MnZnFe,0,) [77].

Despite their relatively modest magnetic properties,
hard ferrite ceramic materials boast exceptional resis-
tance to corrosion and mechanical impacts, rendering
them the most cost-effective type of magnetic materi-
als available. They are widely utilized in manufacturing
of electronic devices, magnetic systems, motors, trans-
formers, and various other equipment.

19°
19°

Typically, the production process for hard ferrite
ceramic materials involves blending corresponding
powders, subjecting them to pressure, and subsequent
sintering at elevated temperatures. However, with
the advent and advancement of 3D printing technolo-
gies, ferritic components can now be fabricated using
innovative methods such as the DIW technique [77].
This technological approach allows for the adjustment
of their magnetic properties by varying the ratio of mag-
netic iron oxide and incorporating additional magnetic
metals.

While hard ferrite ceramic materials possess inferior
magnetic properties compared to other types of mag-
nets such as Nd—Fe—B and Sm—Co, their superior stabi-
lity and versatility make them a compelling option for
a diverse array of applications across various fields.

3. Application scope
of 3D printing
with magnetic materials

3D printing has transformed the manufacturing
industry, facilitating the creation of intricate shapes and
designs previously unattainable through conventional
manufacturing methods. When combined with mag-
netic materials, 3D printing technology opens doors
to a wide array of innovative products.

3.1. Magnetic sensors

Magnetic materials find extensive use in the produc-
tion of sensors. These sensors serve various purposes,
including determining the position of moving objects,
measuring the speed of rotating objects, and detecting
the presence of metal objects. Utilization of 3D prin-
ting technology allows for the production of sensors
with intricate shapes and precise dimensions, custom-
izable to meet specific requirements. Certain applica-
tions, such as medical diagnostics, necessitate irregu-
larly shaped sensors, enabling insertion into the body
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to monitor indicators such as temperature, blood pres-
sure, and blood oxygen levels. Magnetic sensors can be
manufactured using FDM technology [68; 78; 79].

3.2. Magnetic drives

Magnetic drives utilize the interaction between
magnetic fields and magnetic materials to gener-
ate motion. They find widespread applications, par-
ticularly in robotics, automation, and the automotive
industry. 3D printing technologies such as SLA and
FDM [80; 81] enable the production of intricately
designed magnetic drives [82], tailored to specific
requirements. Magnetic drives created through 3D
printing exhibit advanced features [83] and enhanced
efficiency compared to their traditional counterparts.
For instance, a publication [83] details the printing
of a magnet with optimized topology via the FDM pro-
cess. This production method offers advantages such as
rapid and cost-effective fabrication, increased distor-
tion power factor, and high power output. Optimizing
the magnet’s topology allows for the creation of mag-
nets generating a homogeneous magnetic field, crucial
in applications such as nuclear magnetic resonance,
magnetometers, sensors, and magnetic traps, among
others. Additive technologies, particularly FDM,
enable the replication of a pre-designed computer 3D
model with remarkable accuracy.

3.3. Soft robots

Soft drives and robots represent a significant
advancement in human-machine interaction, offering
unrestricted movement due to their pliable nature [84].
Unlike conventional rigid robots, soft robots typically
utilize gels [85; 86], elastomers [87], and other flexible

Anterior
leg

Posterior
leg

Fig. 6. Soft robot structure [95]

Puc. 6. Konctpykius Msarkoro po6ota [95]

materials, allowing them to adapt to their surroun-
dings [88]. Furthermore, integrating magnetic particles
into the polymer matrix [89; 90] or applying magnetic
coatings onto polymer frameworks [91; 92] enables
these soft robots to function within magnetic fields.
However, achieving multiple functionalities with-
out intricate geometry remains challenging [93; 94].
3D printing plays a pivotal role in producing com-
plex designs using multiple materials. For example,
studies detailed in papers [95; 96] highlight the crea-
tion of a soft worm-like robot through SLA technology.
This robot, comprised of composites involving mag-
netic particles and polymer, demonstrates both linear
and rotational motion (see Fig. 6) [95]. This magneti-
cally driven robot shows promise, particularly in con-
trolled medicine delivery [32].

The evolution of 3D printing technologies has
expanded horizons for manufacturing magnetic mate-
rials and related products. The ability to fabricate
parts with advanced features and increased efficiency,
owing to complex shapes and high accuracy, showcases
the potential of 3D printing in this field. Magnetic mate-
rials produced via 3D printing find applications across
various sectors — from sensors and drives to medical
devices and data storage systems. As 3D printing con-
tinues to advance, more innovative uses of magnetic
materials are anticipated in the future.

4. Prospects
for the development
of 3D printing
with magnetic materials

While modern 3D printing offers numerous advan-
tages, certain inherent features pose challenges in cre-
ating magnetic materials. The key current issues and
potential solutions associated with 3D printing of mag-
netic materials are listed below [32].

4.1. Low magnetic
properties

3D-printed magnetic materials often exhibit lower
magnetic properties compared to traditionally manufac-
tured ones. This discrepancy arises due to the inherent
porosity in materials produced through 3D printing,
resulting in slightly reduced material density and sub-
sequently lower magnetic performance.

One potential solution involves the development
of improved magnetic powders and further optimiza-
tion of technological parameters in the 3D printing
process.
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4.2. Limited accuracy

Another characteristic challenge in 3D printing
magnetic materials is the limited accuracy of the print-
ing process. Despite significant advancements in accu-
racy and surface quality, 3D printing still falls short
compared to traditional methods like CNC machin-
ing. This limitation becomes critical when intricate
micro-sized parts from magnetic materials are neces-
sary. Minor alterations in the geometry of a printed
part can substantially impact the material’s magnetic
properties, potentially restricting its utility in specific
applications.

Selecting a 3D printing method based on desired
surface quality and detail, with minimal post-process-
ing, could mitigate this issue to some extent.

4.3. Requirements
for post-processing

A notable challenge in 3D printing magnetic mate-
rials is the necessity for post-processing to attain
the desired magnetic properties. This often involves
subsequent heat treatments and mechanical adjustments,
particularly for enhancing surface quality. However, it’s
worth noting that traditional methods also frequently
require substantial post-processing.

4.4, Limited scalability

One of the significant unresolved challenges in
3D printing magnetic materials pertains to the limited
scalability of the process. Despite its flexibility and cus-
tomization capabilities, 3D printing is currently unable
to match the scale or speed of traditional manufacturing
technologies.

While 3D printing excels in small batch produc-
tion and prototyping, it might not be suitable for large-
scale manufacturing due to its restricted scalability.
Additionally, the limited range of available materials
and the need for post-processing can further hinder
the scalability of 3D printing for magnetic materials.
Nonetheless, emerging technologies like Big Area
Additive Manufacturing (BAAM) and Wire Arc Additive
Manufacturing (WAAM) [97] are starting to enable
the printing of virtually unlimited sizes, potentially
addressing this limitation [97].

Conclusion

In conclusion, the utilization of 3D printing for mag-
netic materials holds the potential to transform nume-
rous industries by facilitating the creation of intricate
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designs with complex geometries previously unachie-
vable through conventional manufacturing methods.
The combination of 3D printing with magnetism integ-
ration presents remarkable possibilities for manipula-
ting and controlling soft robots and drives, particularly
in highly demanding environments such as targeted
medicine delivery within the body. Nevertheless, several
challenges currently impede the seamless implementa-
tion of 3D printing for magnetic materials, including
lower magnetic properties, limited printing accuracy,
post-processing requirements, and scalability limita-
tions. Despite these obstacles, the advancement of 3D
printing technology for magnetic materials remains
an extremely promising area of research. Overcoming
these challenges could unlock even greater opportuni-
ties in the future, fostering innovation and opening
doors to new applications and advancements across
various industries.
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