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Abstract. In recent years, the mechanical engineering sector has undergone significant changes due to the creation and expanding
application of new technologies and materials capable of radically improving the quality of manufactured products, the entire structure
and production conditions. Such technologies include additive manufacturing capable of creating products from advanced materials
such as continuous reinforced polymer composites. Furthermore, the integration of additive manufacturing with industrial robots offers
new opportunities to create spatially reinforced composites with a directed internal structure, obtained by the orderly arrangement
of continuous fibres. This review analyzes the currently available technologies for 3D printing spatially reinforced polymer composites
with the addition of continuous fibers using industrial robots. The review presents the main advanced companies supplying off-the-shelf
commercial systems and presents the successful experience of using these systems in the production of reinforced parts.
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AHHOTayums. B nocreaue ros B MAIIMHOCTPOUTEIFHOM KOMIUIEKCE ITPOUCXO/SIT 3HAUNTEIILHEIE H3MEHEHHS, CBSI3aHHbIE C CO3IaHHEM
U PacIIMPSIOMNMCS IPUMEHEHHEM HOBBIX TEXHOJIOTHH M MaTepHajoB, CIOCOOHBIX KOPEHHBIM 00pa3oM YIIyUIIHTh Ka4eCTBEHHBIC
[10KAa3aTeJIH BBITYCKAEMBIX U3/CIIUI, BCIO CTPYKTYPY U YCJIOBUS IIPOU3BOACTBA. K TaKUM TEXHOIOIUsAM OTHOCSATCS TEXHOIOTUY aJ|Ix-
TUBHOT'O IIPOMU3BOJCTBA, C MOMOIBI KOTOPBIX BO3MOXKHO U3IOTOBJICHUE U3/ENUI U3 IEPEJOBbIX MaTepualoB — K HUM OTHOCSTCS
HEIPEPBhIBHO apMHUPOBAaHHbIE [IOJMMEPHBIE KOMIIO3UTHL. B CBOIO odepens, MHTerpanus ajiJUTUBHBIX TEXHOJIOTHI C IPOMBIIIICH-
HBIMH pOOOTaMH1 OTKPHIBACT HOBBIE BO3MOXKHOCTH CO3/IaHMS ITPOCTPAHCTBEHHO apMHPOBAHHBIX KOMIIO3UTOB C HAaIIPaBJICHHOH BHYT-
peHHel CTPYKTypoOii, MoTydaeMoH 3a CUeT YIOPsIOYEHHOTO PACIIONOXKEHHsT HeTIPEePhIBHBIX BOJIOKOH. B aHHOM 0030pe IpoBeneH
aHaJIU3 CYILECTBYIOLIMX Ha CETOAHAIIHUN JeHb TeXHOIOrui 3D-neuaru npocTpaHCTBEHHO apMUPOBAHHBIX [TOJMMEPHBIX KOMIIO3U-
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IUOHHBIX MarepuaoB C ,I[O6aBHeHI/IeM HCENPEPLIBHBIX BOJIOKOH Ha Oase TTPOMBIIIJICHHBIX pO6OTOB-MaHI/IHyH$ITOpOB. HpCIICTaBHeHI)I
OCHOBHBIC ITEPEAOBBIC KOMITAHUU, ITOCTABJISIIOIINEC I'OTOBBIC KOMMEPYECKUE CUCTEMbI, PACCMOTPEH OILIT YCIICITHOI'O UCIIOJIb30BaHUA

JAHHBIX CUCTEM IIPU U3IOTOBJICHUHU apMUPOBAHHBIX ,I[eTaJ'IefI.
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Introduction

Additive manufacturing (AM) constitutes a swiftly
expanding market, attaining significance in the shift
towards advanced industrial production. Previously,
emphasis predominantly centered on the 3D printing
of metal [1-5] and polymer materials [6-9]. However,
there exists a burgeoning interest in more intricate appli-
cations and innovative material types, commonly referred
to as modern or advanced materials. These materials hold
potential for implementation across five distinct catego-
ries [10]: technical ceramics (oxides, carbides) [11; 12],
polymers (such as the PAEK family encompassing PEEK
and PEKK) [13; 14], metals (refractory metals like tung-
sten and molybdenum) [15; 16], 4D materials (materials
exhibiting shape memory) [17-20], and composites, spe-
cifically polymer composite materials (PCMs) featuring
continuous fibers [21; 22].

Presently, traditional PCM production, primarily
conducted using woven fiber sheets and thermosetting
resins, stands as one of the labor-intensive and costly
manufacturing processes [23]. Nonetheless, composites
persist as one of the swiftest growing and rapidly evol-
ving industrial segments in the global market. The anti-
cipation is that AM technologies will assume a pivotal
role in this evolution, given the array of emerging com-
mercially available technologies and processes.

Recently, VoxelMatters (UK), a company specia-
lizing in market research and analytics within the AM
industry, unveiled a comprehensive map showcasing
technologies and existing companies offering com-
mercial systems for implementing 3D printing pro-
cesses [24]. This map provides users with insights
into the spectrum of extant 3D printing technologies
and the evolving landscape of AM across various
materials, notably polymer composites. Employees
at VoxelMatters [25] highlight that among all mate-
rial families, polymer composites reinforced with
fibers-specifically continuous fibers-possess distinctive
properties and advantages. They underscore that leve-
raging 3D printing technology will augment the utiliza-
tion of these materials, enabling more efficient, cost-

effective, and expedited manufacturing of parts with
a unique combination of final functional properties.

There are currently companies offering desktop
systems designed for 3D printing of continuous fiber
PCM. However, utilizing these 3D printers for PCM
manufacturing presents several disadvantages, the pri-
mary one being the limitation of fiber placement solely
within the plane of the construction platform [26]. This
limitation significantly impacts product design and
creation since the highest mechanical properties are
attained when load application aligns with the direc-
tion of reinforcement. This drawback restricts the pro-
duction of a broad range of parts that experience loads
not confined to the same plane. To address these limi-
tations and other issues inherent in desktop 3D prin-
ters, specialized equipment is being developed based
on industrial robotic manipulators. This approach intro-
duces fresh possibilities and sets new benchmarks for
PCM manufacturing. Key advantages include a larger
working area facilitated by robotic arms compared
to desktop 3D printers, along with the capability to fab-
ricate spatially reinforced polymer composite products.
This is made feasible due to the increased degrees
of freedom afforded by robot manipulators. Detailed
insights into the intricacies of producing such products
and materials, encompassing aspects like tool path
planning, kinematics, robot collision avoidance, and
technological constraints encountered during the prin-
ting process, are extensively described in papers.

This review focuses on examining the present-day
technologies for 3D printing of spatially reinforced
PCM with added continuous fibers through industrial
robotic manipulators. It highlights leading advanced
companies providing readily available commercial
systems and assesses the successful utilization of these
systems in producing reinforced parts.

Existing technology of 3D printing
for continuously reinforced PCM

The evolution of 3D printing technologies for con-
tinuously reinforced PCM has been steady yet notably
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swift, resulting in the emergence of various terms and
methodologies. Researchers at the Technical University
of Munich have endeavored to establish a conceptual
framework for standardizing 3D printing processes
involving continuously reinforced PCM. The intricacy
of this endeavor largely stems from the idiosyncrasies
inherent in the execution of printing processes adopted
by different companies [29]. Nevertheless, contempo-
rary trends indicate a movement toward categorizing
these processes based on the methodologies used for
supplying reinforcing and matrix materials to the prin-
ting head and their deposition during the part-building
process. Fig. 1 provides an overview of the current
implementation schemes and identifies companies
offering commercial systems for PCM 3D printing
incorporating continuous fibers.

It is evident that there are presently five distinct
approaches employed in the realization of the robotic
3D printing process for continuously reinforced PCMs
using commercially available equipment. Below, a sum-
mary of the primary accomplishments attained thus far
for each of these schemes is outlined.

1. In situ impregnation

The core principle of this technology involves
the in situ impregnation of continuous dry fiber within
the extrusion head of the printer using specialized ther-
mosetting or thermoplastic polymer materials. This is
followed by material extrusion through a nozzle and
subsequent curing. Among the key companies employ-
ing the in situ impregnation process via industrial robotic
manipulators are Continuous Composites (USA) [33],
Orbital Composites (USA) [34], and Moi Composites

(Italy) [35]. Predominantly, carbon and basalt fibers
serve as the primary reinforcing materials, while less
commonly used options include glass fiber and natural
fibers.

Continuous Composites, established in 2015, has
pioneered a patented 3D printing technology termed
Continuous Fiber 3D Printing (CF3D). This technique
involves the in situ impregnation of continuous dry
fiber with a specialized fast-curing thermoset resin.
As the material is extruded through the nozzle, it under-
goes instant curing facilitated by a UV light source.
According to the company’s reports [36], the utiliza-
tion of an industrial robot enables material deposition in
any direction, optimizing the orientation of reinforc-
ing fibers based on the specific design requirements
of the manufactured part. Continuous Composites’
patented CF3D technology can be employed with
gantry robots or industrial robots, providing flexibility
in manufacturing. Utilizing a 6-axis robot from Comau,
the company has successfully fabricated intricate parts
and components, including a carbon fiber aircraft wing
spar element (Fig. 2, b).

Continuous Composites employs both structural
fibers (such as carbon, glass-filled, and Kevlar) and
functional fibers (including optical and metallic fibers)
as reinforcing materials. The choice of the matrix
polymer material is predicated on mechanical proper-
ties, heat transfer characteristics, and environmental
resilience, aligning with the operational requisites
of the intended product.

The successful application of CF3D technology
has extended to several university research laborato-
ries [37—40]. In one study [40], the researchers show-
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Fig. 1. Processes classification and basic 3D printing companies
of continuous fiber reinforced PCM based on an industrial robot [32]

Puc. 1. CxeMbl pealii3alny npouecca i OCHOBHbIC KOMIIAHUH 110 3D-mieyatn
HenpepsiBHO apMupoBaHHEIX [IKM Ha 6a3ze mpoMbIIeHHOTO podoTta [32]
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Fig. 2. Examples of the use of 3D printing of PCM by various companies

a, b —robot-based 3D printing of PCM from “Continuous Composites” (a) and carbon fibre aircraft wing spar element for “Lockheed Martin” (b) [33];
¢, d —“Orbital S” 3D printer from “Orbital Composites” (¢) and leading-edge protector for a wind turbine blade (d) [34];
e, f— “Kuka” robotic printing system from “Moi Composites” (e) and continuous fibre reinforced complex-shape parts (f) [35]

Puc. 2. TIpumeps ucnonb3oBanust 3D-medatn [TIKM pa3indaHbIME KOMIAHHUSIMEI

a, b — poborusuposanHas 3D-nevars ot komnanuu «Continuous Composites» (@) U JIEMEHT JOHKEPOHa KPbLUTa CaMoJIeTa U3 YITIEPOTHOrO BOJIOKHA
st komnauuu «Lockheed Martiny (b) [33]; ¢, d — 3D-npuntep moaenu «Orbital S» ot kommanun «Orbital Composites» (c)
U 3alHTa TepeJHeil KPOMKHI ISl TONIACTh BEeTpsiHO# yctanoBkH (d) [34]; e, f— poboTu3upoBaHHas cucTeMa redat Ha ocHoBe pobora «Kukay
ot kommanuu «Moi Composites» (€) U mpHUMepbl H3TOTOBJICHHUS CIOKHOIPOYUIBHBIX KOHCTPYKIIHI,
ApPMHUPOBAHHBIX HENPEPBIBHBIMU BosIOKHaMU (f) [35]

cased their investigations into the mechanical proper-
ties of PCMs manufactured using CF3D technology
via the Comau industrial robotic arm. They examined
samples fabricated from high-temperature thermoset-
ting acrylic polymer GF-2, combined with high-strength
carbon fiber T-1100 at a volume fraction of 41.5 %.
The resulting samples exhibited a Young’s modu-
lus of 122 GPa and a tensile strength of 1599 MPa,
constituting 89 % (137 GPa) and 55 % (2926 MPa)
of the theoretical values, respectively. The authors [40]
underscored that these results are notably high within

the realm of additive manufacturing, highlighting
the promising potential of CF3D technology for manu-
facturing PCM parts.

Established in 2014, Orbital Composites initially
carved its niche in 3D printing components tailored for
space applications. Presently, the company is pioneer-
ing its proprietary 3D printing technology, entailing
the in situ impregnation of continuous dry fiber with ther-
moplastic polymer material, subsequently compacted
using a roller. The manufacturer currently offers three
distinct types of 3D printers based on industrial robots:
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“Orbital e-” — a 6-axis robot geared towards educational
and research endeavors, featuring a 1.2x1.2 m building
platform capable of printing with high-temperature
thermoplastics; “Orbital S” is an industrial-class robot
with a unique manipulator movement system, enabling
flexible attachment points. This facilitates the prin-
ting of large parts from multiple angles (Fig. 2, ¢);
“Orbital F” is a container-type 3D printer for producing
substantial composite structures of large dimensions.

The 3D printers developed by Orbital Composites
possess the capability to heat the nozzle to temperatures
surpassing 500 °C. This functionality enables printing
with a wide spectrum of matrix materials, encompas-
sing all prevailing low-temperature thermoplastics,
in addition to high-temperature materials like PEEK,
PEKK, and others.

Founded in 2018 at the Polytechnic University
of Milan, Moi Composites has pioneered a 3D printing
technology named Continuous Fiber Manufacturing
(CFM) for continuously reinforced PCM. This techno-
logy involves impregnation utilizing epoxy resin, vinyl
ester, and acrylic in conjunction with continuous glass,
carbon, basalt, and other fibers (Fig. 2, e). Besides
manufacturing 3D printers, the company produces
3D printing tool heads capable of integration with any
4-axis CNC machines, offering a flexible and scalable
printing solution.

Moi Composites uses various thermosetting matrix
materials, including epoxy resin, complex vinyl esters,
and acrylic compositions. Continuous glass, carbon, and
basalt fibers are employed as reinforcing components.
The company is currently developing aramid and natu-
ral fibers. The company emphasises the use of acrylic
materials for architectural details due to their transpar-
ency and the absence of a need for temperature during
curing/post-curing. Materials based on complex vinyl
esters are employed for marine components, whereas
epoxy resin-based materials are favoured for the oil and
gas as well as aerospace sectors.

2. Prepreg coextrusion

The underlying principle of this technology involves
the coextrusion of a composite comprising preformed
prepreg containing continuous fibers along with
the addition of a thermoplastic element to facilitate
adhesion to the matrix material. Key companies emp-
loying the prepreg coextrusion process utilizing robotic
manipulators include Anisoprint (Luxembourg) [41]
and CEAD (the Netherlands) [42].

Anisoprint, established in 2015, has innovated its
own Continuous Fiber Coextrusion (CFC) 3D printing
technology, employing two nozzles for matrix and rein-
forcing materials. The reinforcement nozzle comprises

24

two distinct spools: one holding a tow of continuous
fibers impregnated with thermoset, while the other
contains a thermoplastic filament to enhance adhe-
sion between the reinforcement and the matrix. Both are
fed into a single extruder. This configuration of the pro-
cess enables precise control over the volumetric ratio
of fibers, while the utilization of a robot permits
the establishment of intricate curvilinear trajectories
during the 3D printing process (Fig. 3, a). The resulting
manufactured parts constitute PCM structures compri-
sing thermoset and thermoplastic polymers, interwoven
with continuous fibers.

Several low-temperature thermoplastics like PC,
PLA, TPU, PETG, and PA can function effectively as
matrix materials. Reinforcement can be achieved using
prepregs containing continuous fibers of carbon, glass,
aramid, basalt, and boron.

It is noteworthy that, the robotic prepreg coextru-
sion technology developed by Anisoprint has found
extensive application across various industries [43—48].
In a study by the authors of [48], the focus was on inves-
tigating the 3D printing of conformal paths using indust-
rial robots to create shell structures composed of PCM
through coextrusion technology. The primary stages
of the study involved the development of the produc-
tion system, trajectory planning for conformal paths, and
performance testing. The equipment utilized in the study
comprised a Universal Robots UR10e robot equipped
with a coextrusion head, along with an Anisoprint
Composer A4 desktop 3D printer. During the research,
three samples were fabricated (Fig. 4): the first sample
was produced using 3-axis Composer A4 equipment;
in the second sample, the conical part was also crafted
on a 3D printer, while the stiffeners were generated by
a robotic system; the third sample was manufactured
using a conformal method with the robotic system.
The part produced conformally using the robotic system
exhibited a compressive strength and stiffness that were
258.6 % and 134.9 % higher, respectively, compared
to parts created using a 3D printer with three degrees
of freedom.

The CEAD company, established in 2014, speciali-
zes in manufacturing large-scale robotic 3D printers
and is known for developing its proprietary technology
known as “Continuous Fiber Additive Manufacturing”
(CFAM). This patented technology involves a print head
that integrates continuous fibers with molten thermo-
plastic granules (Fig. 3, b, ¢).

3. Prepreg extrusion

The technology involves the extrusion of a compo-
site prepreg impregnated with a thermoplastic polymer
and embedded with continuous fibers. One notable com-



Pon e

POWDER METALLURGY AND FUNCTIONAL COATINGS. 2024;18(1):20-30
Sotov A.V., Zaytsev A.l., etc. Additive manufacturing of continuous fibre reinforced polymer ...

c

Fig. 3. Continuous fibre co-extrusion 3D printer based on the Kuka industrial robot from “Anisoprint” (a) [44],
CEAD’s 36 m “Mega II” 3D printer for “Al Seer Marine” (b) and composite tooling for boat building (c¢) [42]

Puc. 3. 3D-nipuHTep ¢ KOIKCTPY3HEil HeNpephIBHBIX BOJIOKOH Ha 0a3e mpombInuieHHoro podoTa «Kukay
OT KOMITaHHHU «Anisoprint» (a) [44], 36-meTpoBsrit 3D-npuaTep «Mega II» ast Mmopckoit komnanun «Al Seer Marine»
ot komnanuu CEAD (b) 1 xoMmo3uTHast OCHAaCTKa JUIsl H3TOTOBIICHUS JIONOK (c) [42]

Fig. 4. Sample obtained on 3-axis equipment sample (a); sample produced using 3D printer and robotic system (b);
sample produced conformally by robotic system (c) [48]

Puc. 4. O6pa3zel, moaydeHHbII Ha 3-0ceBOM 000pyI0BaHKH (@); 00pa3sell, H3rOTOBICHHbIH ¢ HCIOIb30BaHueM 3D-npuHTepa
1 poOOTH3HPOBAHHOM ycTaHOBKH (b); 0Opasell, co31aHHbIi KOHPOPMHBIM CITOCOOOM POOOTH3UPOBAHHOI cucTeMoit (¢) [48]

mercial entity utilizing prepreg extrusion technology
alongside industrial robotic manipulators is Ingersoll
Machine Tools (USA) [49].

Founded in 1891, Ingersoll Machine Tools became a
part of the Camozzi Group Corporation (Italy) in 2003.
The company primarily specializes in the manufacturing
of precision machines for metalworking, 3D printing,
and automated fiber placement. Since 2015, the com-
pany has expanded its presence in the AM domain,

currently offering five commercially available solu-
tions, including MasterPrint Linear, MasterPrint 3X,
and MasterPrint 5X. These machines are designed
as large-scale 3D printers tailored for printing large-
format PCM. Furthermore, the company presents two
additional solutions grounded on industrial robotic arms
specifically dedicated to 3D printing continuously rein-
forced PCM: “MasterPrint Robotic” and “MasterPrint
Continuous Filament” (Fig. 5).
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4. In situ consolidation

In situ consolidation technology, also referred to as
automated fiber placement, entails the passage of fiber
in prepreg form through a nozzle and subsequent
heating with an added heat source directly at the out-
let. In the realm of equipment manufacturers, there
are companies providing desktop solutions, whereas
the primary manufacturer utilizing industrial robots in
this domain is the prominent company Electroimpact
(USA) [50].

Established in 1986, Electroimpact employs robotic
systems for 3D printing through Automated Fiber
Placement (AFP) technology. The company’s developed
technology merges the AFP method with FDM 3D prin-
ting [51]. This innovative approach involves printing
a mold using the FDM method from a soluble polymer
material. Continuous fibers are then laid in the form
of a narrow ribbon on the mold’s surface by heating
and sealing using a roller pre-impregnated with syn-
thetic resin non-metallic fibers via the AFP method.
After fiber placement, the polymer mold is dissolved.
Electroimpact’s developments encompass SCRAM
(Scalable Composite Robotic Additive Manufacturing),
a 6-axis machine that combines AFP technology with
FDM 3D printing [52].

Continuous fiber tape serves as the reinforcing mate-
rial, pressed using a specialized roller during installa-
tion. The matrix materials primarily comprise thermo-
plastic polymers from the PAEK family (such as PEEK,
PEKK, etc.), alongside nylon and other low-tempera-
ture thermoplastics like PA12, ABS, and others. Besides
thermoplastics as matrix components, the printing tech-

nology also involves the utilization of water-soluble
thermoplastics for producing temporary equipment.
Fig. 6 showcases a 3D printer from the SCRAM series
and a product exemplifying continuously reinforced
PCM.

5. Inline impregnation

Inline impregnation technology represents a hybrid
process amalgamating the benefits of both conventional
and additive manufacturing. In this method, composite
fibers are prepared using conventional impregnation pro-
cesses and subsequently applied to the build platform
through a nozzle. As of now, “Moi Composites” (Italy)
the company previously mentioned, stands as one
of the representatives pioneering this technology.

Conclusions

This review presents an in-depth analysis of exist-
ing additive technologies and equipment utilized
in the manufacturing of continuously reinforced PCM
employing industrial robotic manipulators. It under-
scores the exceptional relevance and promise of this
research domain, particularly in introducing spatially
reinforced PCM imbued with distinctive properties for
producing components in aviation, marine, nuclear, and
other industrial sectors. The technologies discussed
in the review are actively employed in the produc-
tion of large-scale structural components, lightweight
and durable aircraft parts, and composite equipment.
Beyond structural applications, the utilization of robotic
systems opens doors to creating shape-memory polymer

Fig. 5. 3D printing of PCM based on an industrial robot from “Ingersoll Machine Tools” (a)
and examples of manufactured continuous fiber products (b) [49]

Puc. 5. 3D-nievars [TKM Ha 6a3e mpoMBIIIIIEHHOTO poboTa-MaHUITysiTopa ot komrnanuu «Ingersoll Machine Tools» ()
Y TIPUMEPBI U3TOTOBJICHHBIX U3/ICIHN 13 HEMPEPHIBHOTO BOJIOKHA (b) [49]
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Fig. 6. SCRAM 3D printer in the process of applying fibres to a water-soluble tooling (a)
and a compartment door element printed from continuously reinforced PCM (b) [50]

Puc. 6. 3D-npuntep SCRAM B niporiecce HaHECEHHs BOJIOKOH Ha BOIOPACTBOPHMYIO OCHACTKY (&)
M 3JIEMEHT JIBEpPH OTCEKa, HalleYaTaHHbIA 13 HenpepbiBHO apmupoBanHoro [TKM (b) [50]

4D materials for intelligent structures. These structures
offer controllable attributes, such as deployable hinge
structures for solar panels and mirror antennas in space
applications, reconfigurable antenna devices capable
of altering directional patterns during operation, and
intelligent metamaterial designs with adaptive dynamic
characteristics for energy absorption and noise suppres-
sion across various frequency bands.

Significantly, the use of industrial robots offers
increased degrees of freedom, enabling the fabri-
cation of materials with an ordered arrangement
of continuous fibers. This ability facilitates the for-
mation of a directed internal structure in products,
accounting for material property anisotropy. The crea-
tion of an ordered, directional structure via robotic
3D printing using continuous fibers achieves opti-
mal reinforcing effects, aligning with the operational
requirements of the final product. Despite the notable
advancements, it’s evident from the literature analysis
that the development of spatially reinforced PCMs using
industrial robots remains an underexplored yet promising
research area. The rapid evolution of the additive tech-
nology market and its distinctive capabilities in product
shaping highlight the immense potential of this field.
A key objective in advancing AM within this research
domain is the standardization of manufacturing pro-
cesses for continuously reinforced PCMs using industrial
robotic manipulators, with the ultimate aim of deploying
these technologies across diverse industries.
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