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Abstract. Cutting inserts made from the WC-5TiC—10Co hard alloy were produced by sintering blanks that were pressed in a plastic
mold made from polylactide on a 3D printer using a layer-by-layer deposition method. The effect of pressing pressure and plasti-
cizer (rubber) content in the powder mixture on the density of the blanks was studied. As the pressing pressure increased from 50
to 200 MPa, the density of the blanks rose by only 2-6 %. When the plasticizer concentration in the powder mixture increased from 1
to 6 %, the blank density increased by 28-32 %. It was found that the density values of the cutting insert blanks obtained in a plastic
mold differed only slightly from those of standard blanks produced in a steel mold. After sintering in a vacuum furnace at 1450 °C,
the density, carbon content, porosity, microstructure, surface roughness, hardness, and fracture toughness of all the sintered cutting
inserts, standard samples, and the commercial equivalent were investigated. It was shown that the formation of free carbon as a result
of rubber decomposition leads to a decrease in the density of the finished products, and therefore, their hardness. The relative density
(98.7 %) of the cutting insert produced in the plastic mold at a pressing pressure of 50 MPa from powder containing 1 % rubber
exceeded the density of the commercial cutting insert (98.5 %). The obtained cutting insert demonstrated high hardness (1400 HV) and
fracture toughness (13.5 MPa-m'?). The cutting insert made from the WC-5TiC-10Co alloy is not inferior to the commercial TSK10
hard alloy insert in terms of flank wear rate during turning of a steel workpiece.
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AHHoTayms. beiti U3roToBICHBI pekylue miacTuHbl U3 TBepaoro ciuiaa WC—5TiC—10Co criekaHueM 3aroToBOK, CITPECCOBaHHBIX
B IUIACTHKOBOW (hopMme, MOJIydeHHOW M3 MoNuiIakTiaa Ha 3D-npuHTepe MeTofoM MOCIoiHON HaruiaBku. MccienoBaHo BiMsHHE
JTaBJICHHS TPECCOBAHMS M COAEPIKAHUS ITacTU(HUKATOPa (KaydyKa) B TOPOIIKOBOH CMECH Ha INIOTHOCTH 3aroTOBOK. C MOBBIILICHUEM
naBnenus npeccosanust ot 50 go 200 MIla m10THOCTE 3aroTOBOK BO3pacTaeT TOJIbKO Ha 2—6 %. Ilpu yBenuyeHun KOHLEHTpaluu
ruactudukaropa B MOPOIIKOBOH cmec ¢ 1 10 6 % NPOUCXOANT IMOBBIIMIEHHE IUIOTHOCTH 3aroToBok Ha 28-32 %. YcraHoBIEHO,
YTO 3HAYEHHs IUIOTHOCTH 3arOTOBOK PEXYIIMX IUIACTHH, MOJMYyYaeMbIX B IIACTHKOBOI mpecc-hopMe, HE3HAUUTENIBHO OTIINYAIOTCS
OT IUIOTHOCTH CTaHIAPTHBIX 3arOTOBOK, TTOJy4aeMbIX B CTaJIbHOH mpecc-popme. [Tocne criekanns B BAKyyMHOIT IIe4H IpU TeMIepa-
Type 1450 °C Ob11M UccieI0BaHbl INTOTHOCTH, COAEPIKAaHKe YIIIepoa, TOPHUCTOCTh, MUKPOCTPYKTYpA, IIEPOXOBATOCTh ITOBEPXHOCTH,
TBEPJIOCTH U BSI3KOCTh Pa3pyLICHHs BCEX CIIEUSHHBIX PeXKYIIHX [UIACTHH, CTAaHIaPTHBIX 00pa3IoB 1 KOMMepueckoro anaiora. [Toka-
3aHO, 4TO (hOpMHUpOBaHME CBOOOIHOIO YINIeposia B pe3yJbTaTe paslioKeHUs KaydyKa HPHBOJIMT K CHIDKSHHIO TDIOTHOCTH TOTOBBIX
W3/IeNNi, a CIIeJJOBaTeIbHO, U UX TBepaocTH. OTHOCHTENbHAs TIOTHOCTH (98,7 %) peylieil IIacTHHBI, MOTYyYeHHOH B IIACTH-
KOBO# mpecc-popMe mpu AaBieHuu mpeccoBanus S0 MIla u3 mopoika, comepxaiiero 1 % kaydyka, MPEBBIIIAET MUIOTHOCTh
KOMMepUecKor pexyiieit mactunsl (98,5 %). [lonydyennas pexyinas ractuHa uMeetr Bbicokue TBepaocthb (1400 HV) u Bsa3kocTh
paspymenus (13,5 MITa-m'?). UsrotoBnennas pesxymas miactina us criasa WC—5TiC—10Co He ycTynaer no ckopocTH U3HOCa T0
3aJHell rpaHl KOMMeEpUeCcKol macTuHe u3 TBepioro ciutasa TSK10 npu ToueHuH cTaabHOM 3arOTOBKHU.

Knrouessie cniopa: pexxyas IIacTHHA, TPECCOBAHME, TBEPABII crias, 3D-meuars, npecc-hopma, TOIHIAKTH
BnaropgapHocTy: VccrenoBanue mpoBeaeHo mpu noaaepikke rpanta PH® Ne 23-29-00063.

Ana umtnposanus: [IBopuuxk M.U., Muxaitnenko E.A., Bypkos A.A., Uepnsxos E.B. MccienoBanne XapakTepHCTHK PexXyIINX
tiacTuH u3 TBepporo cimiaBa WC—-5TiC—10Co, moiay4eHHbIX ¢ MPUMEHEHHEM IIaCTHKOBOI (JOPMBI, N3rOTOBIEHHOH METOI0M
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printing (3DGP) [25; 26] have reduced density due
to the lack of pressure.

Introduction

Hard alloys based on WC and TiC are widely used
in metalworking [1]. Industrial production of hard
alloy products is based on sintering blanks obtained
by cold pressing in steel or hard alloy molds. These
molds ensure the necessary density and high preci-

An alternative method involves using plastic molds
manufactured on a 3D printer for slip casting of hard
alloy and ceramic blanks, which are later sintered
using conventional methods [27;28]. When using
these methods, the volumetric fraction of the plasti-

sion, possess high productivity, and have a long ser-
vice life, but are limited in terms of product shape
and require significant costs for their manufactur-
ing. In recent years, additive technologies have been
employed to produce complex-shaped hard alloy
products from structural materials [2—4]. However,
these methods face certain challenges. For example,
producing high-density hard alloy products using
selective laser sintering is complicated by changes in
chemical composition [4—15], while blanks for sinter-
ing obtained by binder jetting (BJ) [4; 16-23], fused
filament fabrication (FFF) [24], and gel-based 3D
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cizer must be significantly increased (over 50 vol. %).
Removing the plasticizer from the blanks creates pores,
reducing the density of the products made using these
methods. Studies have shown that WC-15Co hard
alloy blanks can be produced by pressing at pres-
sures up to 120 MPa in plastic molds made by layer-
by-layer deposition [29]. The resulting alloy samples
match the density and characteristics of those obtained
by pressing in conventional steel molds. Expanding
the applicability of this method requires broadening
the range of materials used and increasing pressing
conditions.
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The goal of this study was to investigate the effect
of plasticizer concentration and pressing pressure
(up to 200 MPa) in plastic molds on the density, micro-
structure, hardness, and fracture toughness of cutting
inserts made from the WC-5TiC-10Co hard alloy.
The wear resistance of the obtained samples was also
compared with a commercial equivalent.

Research methodology

To assess the effect of plasticizer concentration and
pressing pressure on the properties of the experimen-
tal samples, 200 g of WC-5TiC-10Co powder was
prepared by mixing powders from the Kirovgrad Hard
Alloy Plant: WC (73.3 %, WC3), (Ti,W)C (16.7 %,
TWC3), and Co (10 %, PK1U)) in a PM-400 pla-
netary mill (Retsch, Germany) for 120 min at 350 rpm.
The ball-to-powder mass ratio was 3:1. After mixing,
the powder was divided into four equal parts, each
of which was supplemented with 1, 2, 4, and 6 wt. %
rubber as a solution. The resulting mixtures were
pressed after drying and granulation.

Plastic
pushers

Steel pusher

Steel shell

The plastic mold for pressing the SNUM-120408
cutting insert blanks (Fig. 1, ¢) was made of polylac-
tide (PLA, produced by Bestfilament, Tomsk) using
layer-by-layer deposition technology on a Flash
Forge Dreamer 3D printer (China). The filling was
100 %, with a first layer thickness of 0.27 mm and
subsequent layers of 0.1 mm. The printing tempera-
ture was 200 °C. The compressive strength, Young’s
modulus, and Poisson’s ratio of the plastic, accord-
ing to test results, were 70 MPa, 1.54 GPa, and 0.38,
respectively [29; 30]. A steel shell, steel rod, and steel
pusher were used to ensure high pressing pressures
(up to 200 MPa) in the plastic mold (Fig. 1, b, ¢).

From each batch of powder, four samples weigh-
ing 8 g each were pressed in plastic molds at pressures
of 50, 100, 150, and 200 MPa, and one rectangular
blank measuring 24x8x8 mm was pressed in a steel
mold at 200 MPa for comparison. A total of 20 diffe-
rent samples were obtained (Fig. 1, e). After press-
ing, the density of the obtained blanks was measured.
The blanks were sintered after plasticizer removal
(Fig. 1, d) at a maximum temperature of 1450 °C. After

Plastic shell

Plastic punch

T5K10 blank

o

Hasneune NpPeCCOBAHHA

200MIla |

200MTa
(cTansnas
|npece-dhopua)

Fig. 1. 3D model of the cutter (a), mold diagram (), mold (c), blanks after pressing (d),
sintered samples and commercial TSK10 cutting insert (e)

Puc. 1. 3D-mopnens pesua (a), cxema npecc-hopmsl (b), npecc-dopma (c), 3arotoBKH nocie mnpeccoanus (d),
crHeYeHHbIE 00pa3ibl 1 KoMMepueckas pexxyiias miactuna T5K10 (e)
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sintering, the samples were ground and polished for
microstructure analysis. Hardness, fracture toughness,
and strength (only for rectangular samples) were mea-
sured, and wear resistance tests were conducted during
the turning of steel 45 using the cutting insert produced
at a pressing pressure of 50 MPa from a powder mix-
ture containing 1 % rubber, compared with the com-
mercial SNUM-120408 insert made from the T5K10
alloy by KZTS.

Pressing and testing of the punches and sintered
samples were conducted on an IP-250M test press
(ZIPO LLC, Armavir) at a loading rate of 0.5 kN/s.
The pressing force required to achieve pressures
of 50, 100, 150, and 200 MPa was calculated based on
the punch area (191 mm?) and the friction force against
the walls of the matrix (11 % of the force). The den-
sity of the powder compacts and sintered samples was
determined by hydrostatic weighing on Vibra scales
(Shinko, Japan). The relative densities of the powder
compacts and sintered samples were calculated based
on the known densities of the WC-5TiC—-10Co alloy
(12.95 g/cm®) and rubber (0.9 g/cm?®). Plasticizer re-
moval and sintering were performed in a Carbolite
STF vacuum furnace (Carbolite Gero, UK). Strength
testing of rectangular samples was carried out accor-
ding to standard methodology (ISO 3327:2009).
Carbon content in the powders was measured on
an EMIA 320V2 analyzer (Horiba Ltd., Japan) after
the removal of the plasticizer by heating along with
other samples. The microstructure of the sintered hard
alloy products was examined using optical (Altami,
St. Petersburg) and scanning electron microscopes
(Tescan Orsay Holding, Czech Republic). The average
grain diameter was calculated using standard metho-
dology (ASTM E112-13). The Vickers hardness of all
samples was determined using an HVS-50 hardness
tester (Time Group Inc., China) (with an accuracy
of 2 %) at a load of P =294 N. Fracture toughness
(K,,) was calculated based on the total crack length (/)
from the hardness tester indenter using the Palmqvist
method (ISO 28079) at a load of P =294 N according
to the Shetty equation:

K,, =0.0028 /HV%. (1)

The performance characteristics of the obtained cut-
ting insert (1 % rubber, pressure of 50 MPa) and the com-
mercial insert were determined during rough turning
(cutting speed of 100 = 10 m/min, depth of 1.5 mm, feed
of 0.2 mm/rev, duration of 3.5 min, length of 330 m)
and finishing (cutting speed of 125 + 15 m/min, depth
of 0.2 mm, feed of 0.05 mm/rev, duration of 10.5 min,
length of 1320 m) of a cylindrical workpiece with
a diameter of 50 to 60 mm made of steel 45 on a 16K20
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lathe (Krasny Proletary Plant, Moscow). The profiles
of the rear surfaces of the cutting inserts and steel
workpieces were examined using a Tr-200 profilometer
(Time Group Inc., China).

Results and discussion

The observed ability of polylactide punches to with-
stand a pressing pressure of 70 MPa, exceeding the yield
strength of this material, is explained by the fact that,
according to the von Mises criterion, under such a load,
the resulting equivalent stress decreases due to the pre-
sence of the second and third principal stresses within
the steel shell (Fig. 1, b, c). Additionally, friction
between the punch, the matrix walls, and the pusher
leads to a reduction (by 11+5 %) in the pressure
exerted on the blank. The dependence of the relative
density of the blanks (p) on the pressure (P) (Fig. 2, a)
is well described by the known relationship [31]:

p=A+BInP. 2)

The parameter B characterizes the rate of density
increase with increasing pressure. Thus, as the press-
ing pressure increases from 50 to 200 MPa, the den-
sity of the blanks increases by 2-6 % for different
plasticizer concentrations (Fig. 2, a), in full agreement
with the relationship (2). The relatively small den-
sity increase with increasing pressure should prevent
uneven density distribution during blank pressing.
The coefficient 4 in equation (2) shows the density
achieved at the initial stage of pressing at relatively
low pressure, which depends on the plasticizer con-
tent and other parameters of the mixture. The relative
density of the blanks pressed at 50 MPa increases from
62 to 95 % as the plasticizer concentration increases
from 1 to 6 % (Fig. 2, b).

An increase in the plasticizer fraction from 1 to 6 %
leads to a 28-32 % increase in blank density at vari-
ous pressing pressures (Fig. 2, ), which is significantly
greater than the density increase caused by increasing
the pressing pressure (Fig. 2, a). The density of all
the obtained blanks exceeded the density of blanks
manufactured using other 3D printing methods
by 2045 % [19; 21-23; 28; 32]. This is primarily due
to the fact that in 3D printing, direct compaction occurs
only under the influence of gravity and surface tension
forces. Fig. 2, a and b show that the density of the blanks
obtained in a steel mold at 200 MPa is no different from
the density of the blanks obtained in a plastic mold
at the same pressure and plasticizer content.

For the sintered samples, it was found that changes in
pressing pressure have almost no effect on their density
(Fig. 2, ¢). Increasing the rubber concentration from 1
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Fig. 2. Dependence of the density of compacts (@, b) and sintered samples (¢, d) on pressure (a, ¢) and rubber concentration (b, d).
Dependence of free carbon concentration (e) and porosity (f) of sintered samples on the rubber concentration of in the blank
a, c: 1 — stell mold; 2-5 — PLA mold; 2 -1 % rubber, 3 -2 %, 4 -4 %,5-6 %
b, d: 1 — stell mold, 2-5 — PLA mold; P, MPa— 50 (2), 100 (3), 150 (4), 200 (1, 5)
f: 1 — calculated value, 2 — microstructure analysis

Puc. 2. 3aBUCHMOCTH IIOTHOCTH MPECCOBOK (&, b) u crieuensix 00pasiuos (¢, d) oT gaBnenus (a, ¢) U KOHIEHTpauu Kayayka (b, d).
3aBHCUMOCTH KOHIICHTPAIIH CBOOOTHOTO yIiepoaa (e) ¥ TOPUCTOCTH (f) CTICYeHHBIX 00pa3IoB
OT KOHIICHTPAIWH KaydyKa B 3arOTOBKE

a, c¢: 1 — cranbHas npecc-popma; 2—5 — PLA-dopma; 2 — 1 % xayuyka, 3 -2 %, 4 -4 %, 5-6 %
b, d: 1 — cranbhas npecc-popma, 2—5 — PLA-popma; P, MIla — 50 (2), 100 (3), 150 (4), 200 (1, 5)
f+ 1 —pacueTHOe 3HaYeHUe, 2 — aHAIIM3 MUKPOCTPYKTYPBbI

to 6 % leads to a decrease in the density of the pro-
ducts from 99.3-99.8 to 86.0-88.6 % (Fig. 2, d), which
is due to the increase in free carbon concentration
formed during rubber decomposition. Analysis showed
that the amount of free carbon in the sintered samples
increases linearly from 0.15 to 0.64 % as the rubber con-
centration in the blanks rises from 1 to 6 % (Fig. 2, e),
corresponding to the formation of approximately 0.1 %
free carbon per 1 % rubber. The increase in the poro-
sity of the samples correlates well with the increase
in free carbon content (Fig. 2, f), meaning the pores
detected in the microstructure are actually inclusions
of free carbon. The porosity values obtained by ana-
lyzing their share in the microstructure surface area
(Fig. 3, a—e) also fit this pattern (Fig. 2, f). It should be
noted that the relative density (99.8 %) of the sample
pressed at 50 MPa from powder containing 1 % rubber
is equal to the density of the commercial cutting insert
(99.8 %).

The sintered samples also do not fall behind in
relative density compared to the best WC—Co alloy
samples with cobalt content up to 15 %, obtained by
direct SLM and SLS methods (densities, %: 96 [5],
96.1 [11], 97.3 [16], 92.4 [17], 98 [33], 97.4 [34)).
There is a slight lag in relative density compared
to the samples produced by sintering blanks obtained
by BJ (100 % [23], 100 % [24]) and FFF methods
(>99 % [35]). Considering that the density of the blanks
obtained by BJ and FFF methods (20-45 %) is signifi-
cantly lower than the density of the blanks obtained in
this study (65-95 %) (Fig. 2, a, b), it can be assumed
that the slight lag in density of the obtained sin-
tered samples (1 %) is due to the lower sinterability
of the WC-TiC—Co alloy compared to WC—Co alloys
and the less advanced sintering method (LPS).

The projections of the obtained and commercial
cutting inserts are similar to each other (Fig. 4, a, d).
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Fig. 3. Microstructures of samples sintered after pressing at pressing at 50 MPa (a, c—e) and 200 MPa (b)
with varying plasticizer content, and the microstructure of the commercial sample (f)

Rubber content, wt. % — 1 (a, b), 2 (c), 4 (d), 6 (e)

Puc. 3. MuKpoCTpyKTYpbl 00pas3IoB, ClIieYeHHbIX mocie npeccoBanus npu aasinenun 50 MIla (a, c—e) u 200 MIla (b)
U PA3TMIHOM COACPIKAHUH MIACTU(UKATOPA H MHUKPOCTPYKTYpa KOMMepUecKoro oopasia (f)

Hons kayuayka, mac. % — 1 (a, b), 2 (¢), 4 (d), 6 (e)

The surface of the insert sintered after pressing in
a plastic mold is distinguished by the characteristic
traces of layers obtained during 3D printing. In addi-
tion, the microstructure of the obtained sample shows
defects formed during the separation of the plastic
punch from the blank. The side surface does not have
such defects. There are no large defects on the poli-
shed section that would differentiate the obtained
sample (Fig.4,b) from the commercial counter-
part (Fig. 4, ). Microstructure analysis showed that
the obtained sample (Fig. 4, ¢) has a larger carbide
grain size (average WC grain diameter davg =1.26 um)
compared to the commercial counterpart (Fig. 4, f)
(davg= 0.88 um). It can be expected that the other
samples also have a larger average grain diameter.
The hardness of the samples pressed in the plastic
mold increases from 1010 to 1400 HV as their density
rises from 85.0 to 98.7 % (Fig. 5, a). Measurements
showed that the fracture toughness of these samples
is largely independent of their density (Fig. 5, b).
The presented dependencies (Fig. 5, a, b) show
that the commercial cutting insert has higher hard-
ness (1450 + 10 HV) and lower fracture toughness
(12.1 £ 0.4 MPa-m'?). According to the analysis of sin-
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tered samples obtained by pressing in a steel mold,
their strength increases with rising density (Fig. 5, ¢).

Profile measurements of the cutting inserts (Fig. 6)
showed that the roughness of the experimental tool was
predictably higher than that of the commercial cutting
insert (see Table), due to surface micro-irregularities
formed during pressing. These irregularities resulted
from the adhesion of plastic to the blank and the rep-
lication of imperfections in the plastic mold’s surface,
which were introduced during 3D printing.

Hardness and roughness are the primary factors
influencing the performance of both the experimental
(Fig. 7, a, b)and commercial (Fig. 7, ¢, d) cutting inserts,
made from the same material, during rough (Fig. 7, a, ¢)
and finishing (Fig. 7, b, d) turning. The increased rough-
ness and lower hardness of the experimental insert
resulted in 5—7 % higher surface roughness on the work-
pieces after both rough and finishing turning compared
to the commercial insert (see Table).

Adhesive wear of the WC-5TiC-10Co alloy cutting
inserts during carbon steel turning, where continuous
chips are formed (Fig.7, a,c), predominates over
other types of wear. In this process, the composition
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Fig. 4. Macrostructures (a, d) and microstructures (b, ¢, e, f) of the WC—5TiC—10Co hard alloy insert (a—c)
sintered after pressing the powder in a plastic mold (P = 50 MPa, 1 % rubber),
and the commercial cutting insert SNUM 120408 made from T5K10 alloy (d—)

Puc. 4. Makpoctpykrypsl (a, d) u MEKpOCTpYKTYpHI (b, ¢, e, f) TBeprociutaBHoi BctaBkn WC—5TiC-10Co (a—c),
CIICYCHHOM MOCIIE MPECCOBaHMsI MOPOIIIKA B ITACTHKOBOI mpecc-popme (P =50 MIla, 1 % kaydyka),
n xommMmepueckoil pexxymeit mmactuasl SNUM 120408 u3 crutaBa T5K10 (d—f)

1500 14,5 2000
7 '3
14,0 |2
1400 1500
o 1351 E"
i s
. 1300 S 130 F y
= S S 1000 -
1200 - L 1251 =
N 2.
12,0 - = 500
1100 |
11,5 F
1000 L 11,0 L 0 L L
85 90 95 100 99,0 99,5 100,0 85 90 95 100
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Fig. 5. Dependence of hardness (a), fracture toughness (b), and strength (¢) of the obtained samples on their density
a: I — commercial TSK10 insert; 2 — steel mold; 3—6 — PLA form
P, MPa: 200 (2), 50 (3), 100 (4), 150 (5), 200 (6)
b: 1 — commercial T5K10 insert; 2 — experimental samples
Puc. 5. 3aBucuMocCTb TBepROCTH (@), BA3KOCTH paspyiieHus (b) n mpodHocTH (¢) MOITydeHHBIX 00pa3IoB OT UX IUNIOTHOCTH

a: 1 — xommepueckas mactuia T5K10; 2 — cransHas npecc-dopma; 3—6 — PLA-dopma
P, MIla: 200 (2), 50 (3), 100 (4), 150 (5), 200 (6)
b: I — xommepueckas mactuHa T5K10; 2 — skcriepuMeHTalbHbIE 00pasibl
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Fig. 6. Profile of the side surface of the experimental (b)
and the commercial (a) cutting inserts

Puc. 6. [Ipoduns 60KOBOW TOBEPXHOCTH
SKCIIEPUMEHTAIBHOM (b) M KOMMEPUECKOH (@) pEKYIIHNX IUTACTHH

of the cutting inserts plays the most significant role,
and since the composition is the same in both cases,
differences in hardness have less impact. The wear on
the rear edge of the experimental cutting insert during
both rough and finishing turning was 5-6 % higher
than that of the commercial counterpart. In this case,
the main cause was the difference in hardness.

Conclusions

The experimental results confirmed that using
a polylactide mold produced by additive manufactu-

Results of testing cutting inserts when turning steel 45

Pe3y.m>TaT|>1 HCNBbITAHUSA PEKYIIUX IVIACTHH IMPHU TOYCHUH CTAIH 45

Roughness of the rear | Roughness of the workpiece, R , pm Wear on the rear edge, pm
Sample surface of the insert, after rough after finishing after rough after finishing
R,, pm turning turning turning turning
Experimental 0.64£0.08 3.90+0.43 2.34+0.23 101 149
Commercial 0.55+0.10 3.68+£0.18 2.19+0.19 96 141
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Fig. 7. Rough (a, c¢) and finishing (b, d) turning using the experimental (@, b) and a commercial (c, d) cutting insert

Puc. 7. YeproBoe (a, ¢) u unctoBoe (b, d) ToueHNE SKCIIEPUMEHTATIBHOM (@, b) 1 KoMMepuecKoii (¢, d) peKyIIuX ITaCTHH
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ring, complemented by a steel shell and pusher,
enables the pressing of hard alloy blanks at pressures
up to 200 MPa. The density of the cutting insert blanks
pressed in these molds from WC-5TiC-10Co is only
slightly different from the density of blanks produced
in steel molds at the same pressure. As pressing pres-
sure increases, the density of the blanks grows only
by 2-6 %, while increasing the plasticizer concentra-
tion in the initial powder mixture by 1 to 6 % results in
a more significant density increase of 28—32 %.

The pressing pressure has little impact on the den-
sity of sintered cutting inserts. As the plasticizer con-
centration increases (from 1 to 6 %), the free carbon
concentration rises (from 0.15 to 0.64 %), which leads
to a decrease in the relative density, hardness, and
strength of the samples. Cutting inserts made from
WC-5TiC-10Co powder with 1 % plasticizer have si-
milar density and porosity to commercial TSK10 inserts.
However, they exhibit lower hardness (1400 = 10 HV)
and higher fracture toughness (135 + 0.4 MPa-m!?)
compared to commercial samples (1447 £ 15 HV and
121 + 0.4 MPa-m'?) of the same alloy, primarily due
to the larger average WC grain size. The wear rate
of the experimental cutting insert is 5—7 % higher than
that of the commercial tool, due to its lower hardness
and higher surface roughness.
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