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The influence of porogen dispersion
on the structure and permeability
of highly porous material from nickel nanopowder

V. S. Shustov®, V. A. Zelensky, M. 1. Alymoyv,
A. B. Ankudinov, A. S. Ustyukhin

A.A. Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
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Abstract. The study investigates the structure, porosity, and permeability of highly porous materials based on nickel nanopowders,
which were synthesized using ammonium carbonate as a porogen. The process of sample fabrication involves three technological
steps: preparation of the initial mixtures of metal nanopowder with a porogen, compaction of the green samples, and subsequent
sintering. The average particle size of the nickel powder was less than 100 nm. Ammonium carbonate powders with particle sizes
of 40-63, 100-160, 200-250, and 315-400 um, obtained by sieving, were selected for the experiments. The porogen’s volume
fraction in the initial mixtures with nickel nanopowder was 60, 80, 85, and 88 %, with a compaction pressure of 300 MPa.
The stages of sintering the nickel nanopowder were preceded by the removal of ammonium carbonate from the green sample
by heating it in an argon flow to 100 °C at a rate not exceeding 1 °C/min. The optimal sintering temperature and time for the nickel
nanopowder were determined to be 550 °C for 120 min. The research aimed to establish the influence of the porogen’s particle
size, its size distribution, and volume fraction on the material’s porosity and permeability. The results showed that increasing
the particle size and volume fraction of the porogen leads to higher porosity and permeability of the material. The maximum
permeability value achieved was 8.4-107'2 m? from a sample with 88.5 % porosity, produced using a porogen with a particle size
0f 315-400 pm. When using porogen powders with two different particle size ranges: 40-50 um and 315-400 pm (or 100-125 pm
and 315-400 um), the permeability was limited to values obtained from samples using only one of these fractions. In this case,
the permeability changed nonlinearly depending on the ratio of each fraction component.
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BnusHune gaucnepcHocTtu nopoobpasoBartens
Ha CTPYKTYPY ¥ NPOHULLaEeMOCTb BbICOKOMOPUCTOrO
MaTepuana M3 HaHOMOPOLLKa HUKens

B. C. IllyctoB®, B. A. 3enenckmit, M. V1. AnpimoB,
A. b. Aukypunos, A. C. Ycrioxun

HNHeTUTYT MeTaJLIypruu U MatepuajioBenenust uM. A.A. baiikoBa Poccuiickoii akazeMun Hayk
Poccust, 119334, . Mocksa, JIeHuHCKMid TIp-T, 49

&) vshscience@mail.ru

AHHOTauMﬂ. B pa60Te HCCIICAOBaHbl CTPYKTYpa, MOPHUCTOCTL U NMPOHULACMOCTH BbICOKOIIOPUCTBIX MaT€prajioB Ha OCHOBE HAHOIIO-

POILKOB HHKeJIs, ITOJTyYeHHBIX C UCIIOJIb30BaHMEM KapOOHAaTa aMMOHHS B KadecTBe mopoobOpasosareins. [Ipomecc M3rotosieHHs
00pa310B BKIIIOYAET TPU TEXHOJIOTNUECKHE OIEPALMU: IPUTOTOBICHHE NCXOIHBIX CMECeH HaHOIOPOIIKa MeTalla ¢ IIopoodpa3oBa-
TeJieM, IIPECCOBaHNE 3aroTOBOK M UX criekanue. CpefHuil pa3mMep 4acTHIl IOpoIKa HUKels coctaBisul Menee 100 um. [lns uccre-
JIOBaHUH BBIOpaHbI HOPOLIKK KapOOHaTa aMMOHHS ¢ YacTuiamu pazmepom 40-63, 100-160, 200-250 n 315-400 MxM, HoJTydeHHEIE
METOJ/IOM CHTOBOTO IpoceBa. OObeMHast 101l HOpooOpa3oBaTesisi B UCXOAHBIX CMECSIX C HAHOIIOPOIIKOM HUKelst cocTasisuia 60, 80,
85 u 88 %, nanenue npeccoBanus — 300 MITa. Craauu criekaHUsI HAHOTIOPOIIIKA HUKEJIS TPEIICCTBOBANA CTAAMs YAAICHNUS Kap0o-
HaTa aMMOHHS U3 MIPECCOBKU IIyTEM €€ HarpeBaHus B MOTOKe aprona jao temmneparypbl 100 °C co ckopoCTbiO, HE MPEBBIIIAIONIEH
1 °C/muH. J{ns HAHOMOPOILKA HHUKEJsl YCTAHOBJCHBI pAallMOHATBHBIC 3HAYCHUS TEMIICpaTypbl W BpeMeHH crekanus — 550 °C,
120 mun. MccnenoBaHue HampaBIeHO Ha YCTaHOBJICHHE BIHMSHHS pa3Mepa 4acTHI[ I0pooOpa3oBaTess, UX PaCIpPEAesICHUsS 110
pa3mMepy U ero 00bEMHOI 1011 Ha HOPUCTOCTH M IIPOHHUIIAEMOCTh Marepuaia. [lomydeHHbIe pe3yabpTaThl HOKa3aiH, YTO YBEJIHYCHHEe
pa3Mepa 4acTuil opooOpa3oBaresst ¥ ero 00bEMHOW JIONN MPUBOJIUT K MOBBIICHUIO IOPUCTOCTH M MPOHHUIIAEMOCTH MaTepuala.
MakcuManbHoe 3Ha4eHUEe JOCTUIHYTOM NPOHMIaeMoCcTH cocTaBmio 8,4-10712 M2 y o6pasua ¢ mopuctocThio 88,5 %, moIy4eHHOro
¢ IpUMEHeHHeM IopoobpaszoBares ¢ pasMepoM dacturl 315-400 mxm. [1pu HcHoOIB30BaHUH TOPOIIKOB IIOPOOOPA30BATENS C YACTH-
LIaMH cpa3y JABYX pa3MepHbIX auana3zoHoB: 40-50 u 315400 mxm (6o 100-125 u 315-400 MKkM), IPOHUIIAEMOCTh OTPAaHUYUBA-
€TCsl 3HAUCHUSIMU, TTOJIyYCHHBIMH Ha 00pa3iax ¢ MPUMEHEHHEM MOPOIIKa TOIBKO OJJHOW M3 yKa3aHHbIX (pakiuil. [Ipu aTOM npoHH-

HaeMOCTb MECHACTCs HEJIMHEHHO B 3aBUCUMOCTU OT COOTHOIICHUS Ka)KI[OfI COCTaBJISIOILCH (l)paKIII/II/I.
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Introduction

Porous materials are used in many industries.
The porous structure, typically regarded as a defect in
structural materials, provides unique properties that
can be utilized for specific purposes [1]. Highly porous
materials can be effectively used as electrodes [2], fil-
ters that separate impurity particles larger than the pore
size [3-5], and are often employed as thermal insula-
tors [6; 7]. Another application of porous materials
is in biocompatible implants [8]. The relatively high
internal surface area makes highly porous materials
excellent catalysts [9; 10].

Depending on the specific application and the re-
quired porous structure, various fabrication methods
can be employed to produce such materials, including
partial sintering, the use of temporary porogens, direct
foaming, and others. In the first case, the powder mate-
rial is sintered in such a way that pores remain between

the particles [11; 12]. This is due either to too low tem-
perature and duration of sintering or to the low den-
sity of the initial green sample. In the second method,
the added porogens decompose into volatile compo-
nents or are washed out of the material during its pro-
duction. The porous structure is controlled by appro-
priately selecting the porogenic substances. For
porous materials produced using dispersed porogens,
the shape and size of the pores depend on the shape
and size of the porogen particles, while porosity is
controlled by the quantitative content of the poro-
gen [13]. This methodology allows for higher poro-
sity values compared to the partial sintering technique.
The approaches applied to the fabrication of highly
porous materials from powders of various natures
with the addition of temporary porogens are seen
by the authors as promising, as they enable wide-rang-
ing control over porosity and pore size in the resulting
material.
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It is important to note that simply having a highly
porous structure is insufficient for certain applica-
tions. For filters and catalysts, it is necessary to cre-
ate a porous material with a high proportion of open
interconnected pores. This ensures good permeability,
an important property for ensuring the reliable operation
of the products in which they are used. Permeability is
defined as the coefficient that relates the pressure gra-
dient to the flow rate of the medium passing through
the sample. It depends on the porous structure and can
vary sharply with changes in the pore size distribution
or the spatial arrangement and shape of the pore chan-
nels [10; 14—17]. It should be noted that a high porosity
value does not always indicate good permeability.

In many studies where the authors create a porous
material and investigate its structure, insufficient
attention is paid to this parameter. However, some
researchers provide permeability data without a tho-
rough analysis of their relationship with the morpho-
logy of the porous space. Most studies focusing on per-
meability examine the flow of media through porous
structures governed by Darcy’s law or Forchheimer’s
law [18-25]. These laws are phenomenological and
do not contain any condition describing the influence
of the material’s microstructure. Thercfore, resear-
chers face the pressing task of finding ways to accu-
rately assess permeability based on models developed
considering the material’s microstructure parame-
ters and allowing for predictions of permeability
levels [26; 27]. Existing models do not fully account
for all the features of the porous structures of modern
materials, and creating new models requires a signifi-
cant amount of experimental data on the relationship
between permeability and various structural charac-
teristics. Consequently, to better understand the pro-
cesses, experimental studies are necessary to iden-
tify the connection between the structural features
of the porous material and its permeability.

The aim of this work was to establish the influence
of the porogen particle size and its volume fraction on
the porosity and permeability of the nickel nanopowder
material produced through pressing and sintering.

Research methodology

Nickel nanopowder with an average particle size
of less than 100 nm, produced by wire explosion tech-
nology, was used as the starting material for the pro-
duction of porous samples. This powder contained
a small amount of larger spherical particles, up to 3 pm
in size, which is a characteristic and drawback of this
method for obtaining nanopowders. Ammonium car-
bonate (NH,),CO, powders were used as the porogen.
To study the influence of the volume fraction and dis-
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persion of the porogen on the structure and permeabi-
lity, ammonium carbonate powders with particle sizes
of d=40+63, 100160, 200+250, and 315+400 um
were selected.

To determine the effect of the particle size distribu-
tion of the porogen on the structure and permeability,
additional mixtures of the porogen were prepared, using
particles from two size ranges: 40—-50 and 315—400 um,
as well as 100—125 and 315-400 pm. For simplicity,
these porogen powders will hereafter be referred to as
“bidisperse”. In each mixture, the amounts of both
fractions of the powders were varied in steps of 25 % —
from 100 % content of the powder with d = 40+50 pm
(or 100+125 pm) to 100 % content of the powder
with d = 315+400 pm.

The production of porous nickel materials consisted
of three technological operations: preparing the ini-
tial mixtures of nickel nanopowder with the porogen,
compacting the green samples, and sintering them.
The volume fraction of the porogen in the initial mix-
tures was 60, 80, 85, and 88 %, with a compaction
pressure of 300 MPa. The samples were produced
by uniaxial compaction on a hydraulic press (Knuth,
Germany) in a split mold with a diameter of 13.6 mm.
The height of the compacts before sintering was 10 mm.
To remove ammonium carbonate, the compacts were
heated in an argon flow to a temperature of 100 °C
at a rate not exceeding 1 °C/min. The optimal sinte-
ring temperature for the nickel nanopowder was deter-
mined to be 550 °C, with a sintering time of 120 min.
The heating rate to the sintering temperature did not
exceed 2 °C/min, which was necessary for the slow
removal of the decomposition products of the porogen.
Higher heating rates resulted in structural defects in
the samples, such as microcracks. The thermal treat-
ment of the samples was conducted in a tube furnace
(MTI GSL1500X, USA).

Porosity was measured using the hydrostatic weigh-
ing method, with a relative error not exceeding 0.6 %.
The permeability of the obtained porous nickel samples
was determined using a method based on Darcy’s law.
For this, while a liquid flowed through the sample,
the pressure drop across its ends and the flow rate
of the liquid — determined by the known volume
of liquid passing through the sample over a fixed
period — were recorded. The study was conducted
by passing distilled water under pressure at room tem-
perature. The pressure drop across the tested samples
varied from 0 to 0.02 MPa, with the value recorded
using a digital manometer (DM5002M, Manotomy
JSC, Russia) with an allowable measurement error
of 2:10° MPa. The relative error in the permeability
measurement did not exceed 10 %.
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Results and discussion

Fig. 1 presents the microstructure of the fracture
surfaces of samples with porosities of 79.3 and 88.5 %,
sintered in a hydrogen atmosphere at a temperature
of 550 °C. The volume fraction of the porogen in
the mixture from which these samples were pressed
was 80 and 88 %, respectively. Scanning electron
microscopy revealed that, due to the thermal decom-
position of the porogen, a pore structure was formed,
which can be considered a replica of the removed poro-
gen, with some modification in their shape and size as
a result of compaction and sintering. Due to the high
activity of the nanopowders, sintering was conducted
at a relatively low temperature, resulting in samples
with sufficient strength necessary for further investiga-
tion of their permeability.

In samples with an initial porogen content of 88 %,
a significant number of thin walls, with a thickness
of no more than 1-3 pm, were observed, featuring
“windows” formed at the points of contact between
porogen particles as well as from the escape of decom-
position products. The small amount of nickel powder

present in the framework of the highly porous mate-
rial apparently defined a “lace-like” structure in these
walls, characterized by numerous smaller holes or
voids compared to the windows. Moreover, the smaller
the porogen used, the more pronounced this structure
became.

The influence of the volume fraction of the porogen
and its dispersion on the porosity (P) and permeabi-
lity (K) of the sintered material was investigated. Fig. 2
presents the dependencies of the porosity of the sin-
tered material on the particle size (d) of the porogen for
samples in which the volume fraction of the porogen
was 65, 80, 85, and 88 %. It is evident that the value
of P increases with increasing values of d. When using
a porogen with d > 100 pum, the porosity of the sintered
material equals or exceeds the expected value, which is
equal to the volume fraction of the porogen in the ini-
tial mixture. For d =40+63 pm, the value of P was
lower than expected, except for samples with a poro-
gen volume fraction of 65 %. The closed porosity of all
materials did not exceed 1 %. The porogen (NH,),CO,
decomposes during sintering at temperatures below
100 °C. This leads to the release of pore space and

Fig. 1. SEM images of the fracture of nickel nanopowder samples obtained using a porogen
of 80 vol. % (a, b) and 88 vol. % (c, d), and particle sizes of 40—-63 pm (a, ¢) and 315-400 um (b, d)

Puc. 1. POM-u300paskeHust H3oMa 00pa3ioB U3 HAHOMOPOIIKA HUKEIsI, TIOJYYeHHBIX C MPUMEHEHHEM opoodpa3zoBaresst
obovemuoit goneit 80 % (a, b) u 88 % (c, d) n pazmepom uactun 40—63 MM (a, ¢) u 315400 mx™m (b, d)
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the formation of channels that connect the pores
to the free surface of the sample. The interconnection
of pores in such materials determines the high propor-
tion of open porosity and their permeability.

The dependence of permeability on the volume
fraction of the porogen and its dispersion was inves-
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Fig. 2. Diagrams showing the dependence
of the porosity of the sintered material on the particle size
of the porogen for samples with volume fractions
of 65 (a), 80 (b), 85 (¢), and 88 % (d)
The hatching indicates the volume fraction of the porogen
in the initial mixture

Puc. 2. [lnarpaMMbl 3aBUCHMOCTH TIOPHCTOCTH CIIEYEHHOTO
MaTepHaa oT pa3Mepa 4acTHI[ TopooOpa3oBaress
U1 00pasIoB, B KOTOPBIX 00BEMHas! OIS OCIEAHEr0
cocrtaBisna 65 (a), 80 (b), 85 (¢) u 88 % (d)

[ITpuxoBKoii ykazaHa oObeMHast 1015 TOPOOOpazoBaTes
B MCXO/IHOH cMecn
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tigated (Fig. 3). It was found that as the volume frac-
tion of the porogen increases, the permeability also
rises. Additionally, this increase is achieved through
the enlargement of the porogen particle size while
maintaining a constant volume fraction in the ini-
tial powder mixture. For example, with a porogen
content of 65 vol. %, the permeability (K, 107'?)
increases from 0.1 to 0.4 m? at 80 vol. %, it rises
from 1 to 2.9 m?, at 85 vol. %, from 1.8 to 4.6 m?, and
at 88 vol. %, from 3.9 to 8.4 m>.

Fig. 4 illustrates the dependence of permeability
on the porosity of the material for samples obtained
using porogen powder with particles of a specified size
range.

Using the compaction and sintering regimes
described above, samples were obtained from mixtures
of nickel nanopowder and bidisperse porogen, with
the latter fixed at 85 vol. %. Data from Fig. 5 show that
the samples contain pores corresponding to the sizes
of the particles of the porogen used — large pores from
particles with diameters of 315-400 pm and small
pores from particles with diameters of 40-50 um
or 100-125 um (Fig. 5, a,b). No inhomogeneity
in the pore distribution within the volume of the samp-
les was detected.

It is noteworthy that in samples containing
the porogen with smaller particle sizes (40-50 um),
there was a greater number of windows on the sur-
faces of the larger pores. These windows are compa-
rable in size to the smaller porogen particles and were
likely formed due to their contact with the larger ones.
It can be hypothesized that a greater number of win-
dows will provide better permeability in this series
of samples, along with the high permeability achieved

9
8 -
7 -
vol. %
I 6 ~
g W 65
8 5 [ 80
S 4L MW 85
L M 88
M 3 -
2 -
1 -
0
40-63 100-160 200-250 315400
d, pm

Fig. 3. Diagram showing the dependence of the permeability
of the nickel nanopowder material on the volume fraction
of the porogen and its dispersion

Puc. 3. lnarpaMmma 3aBUCHMOCTH TIPOHHIIAEMOCTH MaTepHaa
W3 HAHOTIOPOIIIKA HUKEIISI OT 00BEMHO#T 10K OpO0Opa3zoBaress
U €ro JIUCTICPCHOCTH
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Fig. 4. Graph showing the dependence of the material’s
permeability on the total porosity for samples
obtained using porogens of varying dispersion

Puc. 4. I'paduk 3aBUCHMOCTH IIPOHUI[AEMOCTU MaTepHaia
OT 00IIei HOPUCTOCTH JUTsl 00pa3OB, MOIYYESHHBIX
¢ IPUMEHEHUEM ITopoodpa3zoBaTeneil pa3Hoil AUCIIePCHOCTH

by using porogen with particle sizes of 315400 um.
However, according to the results of the study (Fig. 6),
the samples obtained from mixtures with smaller poro-

gen particles (40-50 um) exhibited lower permeabi-
lity compared to those using powders with diameters
of 100—125 pm. The content of larger porogen particles
(315-400 pm) ranging from 0 to 50 % did not lead
to a significant change in the value of K: for samples
made with porogen of 40-50 um, the permeability
was (1.3+0.1)- 10712 m?, while with 100-125 pum it was
(2.240.2)- 102 m?. Further increasing the proportion
of 315-400 um particles in the porogen resulted in
an increase in K to 4.6-10712 m?2,

Conclusions

As a result of the conducted studies on the struc-
ture and permeability of the obtained porous materials,
the following conclusions were established.

1. The permeability of highly porous materials made
from nickel nanopowders increases with both the volu-
me fraction of the porogen, ranging from 60 to 88 %,
and the particle size of the porogen. The maximum per-
meability achieved was 8.4-107'2 m? in a sample with
a porosity of 88.5 %.

Fig. 5. SEM images of the fracture of porous nickel nanopowder samples obtained using a bidisperse porogen
with particle sizes of 40—-50 and 315-400 um (@), and 100-125 and 315400 pum (b)

The volume ratio of porogen particles of both sizes in the samples was 50:50

Puc. 5. POM-n300paxeHus U3710Ma OPUCTBIX 00Pa3IOB M3 HAHOIOPOIIIKA HUKEIS, MOJTYYCHHBIX C TPUMCHEHHEM
oumucnepcHoro mopoodpasosarens ¢ pazmepom yactuil 40—50 u 315-400 mxMm (@) u 100—125 u 315400 mxwm (b)

O0beMHOE COOTHOLICHUE YaCTUI] TOPOOOpazoBaresst 000uX pazMepoB B 00pa3iax cocTasisiio 50:50
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K, 10" m’

0 25 50 75

100

Fraction of particles, vol. %

Fig. 6. Dependence of the permeability of samples obtained
using a bidisperse porogen on the volume fraction
of particles sized 315-400 um in the initial mixture containing
particles sized 40—50 pm (Z) and 100-125 pum (2)

Puc. 6. 3aBUCHMOCTb IIPOHMIIAEMOCTH 00Pa3I0B, HOJIYIEHHBIX
C MpUMEeHeHNeM OHIUCIIEPCHOTO II0pooOpa3oBaTes,
0T 00beMHOH 1011 ero yacTul pazmepoM 315-400 MM
B UCXOIHO# cMecH aucniepcHOCTh0 40—-50 MkM (1)
n 100-125 MM (2)

2. Using a bidisperse porogen facilitates smoother
regulation of the permeability in nickel nanopow-
der materials. As the proportion of larger particles
(315400 um) in the porogen powder increases,
the samples exhibit enhanced permeability. The lowest
permeability was recorded when only fine porogen
was used (e.g., with particle sizes of 40-50 um or
100-125 pm). When up to 50 vol. % of larger particles
is added, the permeability varies by approximately
10 %. A notable increase in permeability, reaching
4.6-10712m?, is observed at a 100 % volume fraction
of porogen particles sized 315-400 pm in the initial
mixture.
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