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for electric spark deposition
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Abstract. Research on novel metalloceramic coatings that combine high-temperature oxidation resistance and wear resistance remains
a relevant topic. Ni-Al-Fe coatings reinforced with varying amounts of tungsten carbide were synthesized for the first time using
electric spark deposition on 35 steel. Their structure was analyzed using X-ray phase analysis and scanning electron microscopy.
The average thickness of the WC/Ni—Al-Fe coatings ranged from 23 to 33 um. The identified phases included AINi, (Fe, Ni), a-WC,
and W,C. The coating microstructure exhibited reinforcing tungsten carbide inclusions with diameters ranging from 1.49 to 10.12 pum.
The corrosion behavior of coated samples was studied using potentiodynamic polarization and impedance spectroscopy in a 3.5 %
NaCl solution. The coatings’ high-temperature oxidation resistance was evaluated at 700 °C for 110 h under natural aeration condi-
tions. Wear testing was conducted under dry friction conditions at loads of 25 and 50 N. The results demonstrate that the application
of WC/Ni—Al-Fe-coatings can reduce the specific wear of the steel surface by a factor of 11 to 24 and enhances resistance to high-
temperature oxidation by a factor of 10.5 to 49.9.
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UcnonbsoBaHue rpaHyn Ni n Al u nopowka WC
BNSl 9N1IeKTPOUCKPOBOro HaHeCeHUs
MeTaNJloKkepaMU4YeCKUX MOKPbITUI
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AHHOTayms. ViccienoBaHusi HOBBIX METaTIOKEPAMHYECKUX TMOKPBITHH, COYETAIONIMX BBICOKYIO JKapOCTOWKOCTh M YCTOWYHMBOCTD
K M3HOCY, SIBJISOTCS akTyanbHbIMU. Ni—Al-Fe MOKpbITHS, apMUPOBAHHBIC PA3ITMYHBIM KOJIMYECTBOM KapOuaa Bosib(hpama, BriepBbie
MOJTy4eHBI METOJIOM IEKTPOUCKPOBOTO JIETMPOBaHUs Ha cTay 35. X CTpyKTypa MCCIeoBalach METOAMH PEHTIEHOCTPYKTYp-
HOro (a30BOro aHallk3a M CKaHUpYIolel dnekTpoHHoi Mukpockonuu. Cpennsist Tonmuaa WC/Ni—Al-Fe-nokpbitTuii cocrassiia
oT 23 110 33 mxM. B ux cocrase uaentudunuponanst dasel AINi, (Fe, Ni), a-WC u W,C. B MUKpOCTpYKType HOKDBITUH HaOII0-
JIATTCh apMUpPYIOIHe BKIIOYeHUs Kapbuaa Bombdpama auamerpom ot 1,49 no 10,12 mxm. KopposuonHoe noBeneHue 00pasios
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C HOKPBITHAMHU H3y4aloCh METOAAMHU IMOTCHIMOJMHAMHYCCKOM MOApU3ALMU U HMMIIEJAHCHOW cHeKkTpockonuu B 3,5 %-Hom
pactBope NaCl. XKapocTolikocTs HOKpEITHI HccienoBanack mpu Temneparype 700 °C B Teuenne 110 4 B ycnoBHsSX €CTECTBEHHOU
aspanuu. TecTupoBaHue HAa U3HOC IPOBOJUIOCH B PEKUME CyXOro TpeHus npu Harpyskax 25 u 50 H. Iloka3aHo, 4To npuMeHeHue
WC/Ni-Al-Fe-nokpsITnii H0O3BOISET COKPATUTh IPUBECHHBIN H3HOC IIOBEPXHOCTH CTAIBHBIX M3enuii ¢ 11 1o 24 pa3 1 MOBEICUTH
CTOMKOCTB K BBICOKOTEMIIEpaTypHOH ra3oBoii kopposuu ¢ 10,5 1o 49,9 pa3a.

Knrouessie cnosa: nokpeitsi WC/Ni—Al-Fe, anekrporckpoBoe JierupoBanue, Henokanu3osanueiii anexrpon (HD), crans Cr3, pent-
reHo(a30BbIi aHAIN3, KOPPO3UsL, KOIPPHULUEHT TPEHNUS, TBEPAOCTb, H3HOC

BnarogapHocTy: Pabota BHINONHEHA B paMKax rocynapcTBeHHoro 3aaanus Ne 075-01108-23-02.

Ans unTuposarusa: bypxos A.A. Ucnonp3oBanue rpanyi Ni u Al u mopomka WC 1I1s 27IEKTPOMCKPOBOTO HAHECEHUST METAJIOKEepa-
MHUYECKUX MOKPBITUL. M36ecmus 8y308. [lopowkosas memannypeus u ¢ynkyuonanvrvle nokpvimus. 2025;19(2):62-72.
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Introduction

Metalloceramic composites (MCCs) are among
the most widely used wear-resistant materials [1]. They
typically consist of hard carbide particles (WC, TiC,
TiB,, TaC, NbC) bonded by ductile metallic phases
such as Co, Fe, and Ni [2]. The carbide particles in
these composites provide high hardness and wear
resistance, while the binder phase enhances toughness.
Over the past century, among various carbide-based
materials, tungsten carbide (WC) composites have
found the broadest application across multiple indust-
ries [3-5]. A key aspect of this class of metallocera-
mics is the type of metallic binder used.

For many years, cobalt has been the most com-
monly used metallic binder due to its excellent wetta-
bility with tungsten carbide grains and the high impact
toughness it provides [6]. However, its use raises
serious environmental concerns and is further limited
by its high cost. Studies indicate that prolonged inhala-
tion exposure to cobalt can cause allergic reactions and
cancer [7]. Additionally, its poor corrosion and oxida-
tion resistance, along with unsatisfactory mechani-
cal performance at temperatures above 600 °C, have
driven researchers to seek alternative binders [8].

For instance, intermetallic Ni—Al alloys are some-
times considered as metallic binders [9; 10] due
to their favorable properties, including high melting
points, heat resistance, low density, and excellent oxi-
dation resistance, which can compensate for tungsten
carbide’s poor oxidation resistance [11].

Iron aluminide (FeAl) is known to be a suitable
binding matrix for tungsten carbide due to its favo-
rable properties, including good wettability with WC,
enhanced hardness, low density, and high oxidation
resistance in oxidative, carburizing, and sulfidizing
environments [12]. A dense AL O, film, known for its
excellent protective properties, can form on the surface
of nickel and iron aluminides [13]. However, ternary
Al-Ni—Fe alloys remain significantly less studied [14],
despite their potential for enhanced hardness and oxi-

dation resistance, while also requiring less nickel com-
pared to NiAl-based materials. Additionally, nickel
alloying of FeAl has been shown to induce significant
solid-solution strengthening [15].

Tungsten carbide-based metalloceramic com-
posites are widely used as coatings on structural
metals to improve hardness, wear resistance, and
oxidation resistance [16; 17]. For instance, in stu-
dies [18;19], WC/FeAl coatings were deposited
onto structural steels using laser cladding and high-
velocity arc spraying. However, tungsten carbide-
based coatings with Ni—Al and Ni—-Al-Fe matrices
have been explored to a much lesser extent. In [20],
WC/NiAl/TiC coatings were prepared using laser clad-
ding. A (NiAl), WC,—Fe(0-15 wt. %) coating with
a ternary Ni—Al-Fe matrix was deposited onto low-
alloy Q235 steel using plasma cladding [17].

The electric spark deposition (ESD) method is
employed for depositing metallic and metalloceramic
materials onto metal substrates and is characterized
by minimal thermal impact on the base material’s
structure, while producing coatings with strong adhe-
sion [21]. The use of a nonlocalized electrode (NLE)
in ESD enables automation of the deposition process,
including applications on complex-shaped compo-
nents [22]. In our previous study, the electric spark
deposition with a nonlocalized electrode (ESD-NLE)
method was used to produce WC/Fe—Al coatings,
where the NLE consisted of aluminum and iron granu-
les combined with a-WC powder [23].

The objective of this study is to investigate the fea-
sibility of producing metalloceramic coatings using
the ESD-NLE method on 35 steel, using Ni and Al
granules along with WC powder.

Materials and methods

The composition of the NLE is shown in
Table 1. The aluminum alloy 1188 and high-purity
nickel (99.99 %) granules were shaped as cylin-
ders (h=4+1mm, d=4+0.5mm) and cubes
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Table 1. Coating designation based on NLE composition

Ta6bnumya 1. MapKkupoBKa NOKPLITHIi
B 3aBHUCHMOCTH OT coctaBa HD

Granule ratio,
v, Granple WC powder
Sample at. 7o fraction, . 0
- o fraction, vol. %
Al Ni vol. %
ANW2 98
ANW4 15 85 96
ANWO6 94

(4x4x4 + 0.5 mm), respectively. The tungsten carbide
powder (TU 6-09-03-360-78) had a purity of 99.9 %
and an average particle diameter of 1.1+ 0.3 um.
The NLE composition was designed with a dominance
of nickel, maintaining a Ni/Al ratio of 17:3, as alumi-
num has significantly lower electroerosion resistance
than nickel [24]. The 35 steel substrate acted as an iron
source for the WC/Ni—Al-Fe coatings, as iron from
the steel base is known to diffuse into ESD coatings [23].
Fig. 1 illustrates the schematic of the ESD setup operat-
ing in an environment of granules and powder.

The 35 steel substrate was fabricated in the form
of a cylinder (d =12 mm, A =10 mm). The IMES-40
power generator, operating at 30V, produced cur-
rent pulses with an amplitude of 110 A, a duration
of 100 ps, and a period of 1000 ps. To minimize oxida-
tion, coating deposition was carried out under an argon
flow (5 L/min). The deposition time for each sample
was 10 min.

The phase composition of the obtained coatings
was analyzed using a DROH-7 X-ray diffractometer
(NPP Burevestnik, Russia) with CuK  radiation
(L =1.54056 A). The microstructure and elemental
composition of the coatings were examined using
a Vega 3 LMH scanning electron microscope (Tescan,
Czech Republic) equipped with an X-max 80 energy-
dispersive spectrometer (EDS) (Oxford Instruments,
UK). The surface roughness of the coatings was mea-
sured using the R, parameter with a Profilometer 296
(USSR). The wettability of the coated surfaces with
deionized water was evaluated using the sessile drop
method at 25 °C [25]. The Vickers hardness of the coa-
tings was measured using a PMT-3M microhardness
tester under a 1.96 N load. Tribological tests were
conducted following the ASTM G99-17 procedure
using the pin-on-disk configuration (without roun-
ding of the pin end) at a rotation frequency of 3 rev/s
under loads of 25 and 50 N for 10 min. High-speed
steel M45 disks (d =50 mm, 60 HRC) were used as
counterbodies.

The tribological tests were performed on a labora-
tory test bench equipped with a M40-50 non-contact
torque sensor (Belarus). The specific wear rate was
determined gravimetrically, considering the density
of the coatings, which was calculated using the rule
of mixtures based on the chemical composition.
The electrochemical corrosion tests of coated samples
were conducted using a P-40X potentiostat-galvanostat
(Electro Chemical Instruments, Russia) equipped with
an impedance measurement module, in a standard
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Fig. 1. Schematic of the experimental setup for electric spark granules deposition of granules

1 — pulse discharge generation unit, I — measuring and control unit, /17 — electrode switching unit
1 — control pulse generator, 2 — power generator, 3 — microcontroller, 4 — computer, 5 — analog-to-digital converter,
6 — current and voltage measuring device, 7 — cathode (35 steel), 8§ — Ni and Al granules, WC powder, 9 — current lead (container),
10, 11 — motors for the cathode and the granule container, respectively, 12 — gas solenoid valve, 13 — micromanipulator

Puc. 1. Cxema 3KCIIEpUMEHTAJILHON YCTAHOBKHU ISt IEKTPOUCKPOBOTO OCAKICHUS TPaHyIl

I — 6110k reHepaluy pa3psIHBIX UMITYJIbCOB, 1] — H3MEpUTEIIBHBII 1 YIPaBISIONIHiT OJIOK,
IIT — 6110k KOMMYTAIMH 3JIEKTPOJIOB
1 — reneparop ynpasJIsFOLIMX UMITYJIbCOB, 2 — CUJIOBOI reHepaTop, 3 — MUKPOKOHTPOILIEP, 4 — KOMITBIOTED,
5 — ananoro-unugpoBoii npeodpazoBarelib, 6 — K3MEPUTEIILHOE YCTPOUCTBO TOKA U HANpPsDKEHHs, 7 — Karoi (cTaib 35),
8 — rpanyins! Ni n Al, nopomox WC, 9 — tokonpoBox (koHTeitHep), 10, 11 — BuraTenn KaToaa U KOHTeHHepa ¢ rpaHylIaMH COOTBETCTBEHHO,
12 — ra3oBblil 251eKTpOKIIANaH, 13 — MUKPOMaHHITYIIITOP
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three-electrode cell containing a 3.5 % NaCl solution.
An Ag/AgCl electrode served as the reference elect-
rode, while an ETP-02 platinum electrode was used
as the counter electrode. To stabilize the open-circuit
potential, the samples were immersed in the electrolyte
solution for 60 min before measurements.

Cyclic oxidation resistance was tested at 700 °C.
The samples were placed in a preheated muffle furnace,
held for approximately 6 h, then transferred to a desic-
cator until fully cooled before weighing. During test-
ing, the samples were kept in corundum crucibles
to prevent the loss of spalled oxide scale. The total test
duration was 100 h.

Results and discussion

When testing new electrode materials, it is essential
to record mass transfer during ESD to determine the spe-
cific mass gain of the cathode, as this parameter defines
the thickness of the formed coating [21]. As the num-
ber of discharge pulses increased (i.e., with longer
ESD-NLE duration), the cathode continuously gained
mass (Fig.2). Over 10 min of ESD-NLE, the total
specific mass gain ranged from 4.2 to 6.3 mg/cm?.
The average values were independent of the electrode
type, considering the measurement error.

Fig. 3, a, ¢, and e show cross-sections of WC/Ni—
Al-Fe coatings. As seen from Table 2, their average
thickness is practically independent of the WC pow-
der content in the NLE, ranging from 31.5 to 32.7 um.
The coating structure consists of a gray matrix rein-
forced with bright inclusions of micron- and submicron-
sized particles. The diameter of the micron-sized inclu-
sions ranges from 3 to 20 pm, and these are agglomer-
ates of the original WC powder particles. According
to EDS data, as the WC powder content in the NLE
increases, the coating matrix composition is monotoni-
cally enriched with tungsten and iron, while the nickel
and aluminum concentrations decrease (Fig. 3, b, d, f).

As the WC content in the NLE increases from
ANW2 to ANW6, the average tungsten concentration
in the coating matrix rises from 5.3 to 23.2 at. %, while
the iron content increases from 35.5 to 57.6 at. %,
and the nickel concentration decreases from 35.3
to 4.8 at. %. This is due to the fact that the powder

elements in the ESD-NLE coating are present in dis-
proportionately higher amounts than the granule com-
ponents, a trend we previously observed [26]. ANW2
coating has the most balanced atomic ratio of alumi-
num, nickel, and iron.

Thus, adjusting the WC powder fraction in the elect-
rode enables control over the metal ratio in the coa-
ting. The high iron concentration in the ANW6 coa-
ting matrix confirms the substrate material’s involve-
ment in the formation of the ESD coating. As the WC
powder fraction in the NLE increases, the proportion
of white inclusions in the coatings also rises, as seen in
Fig.3,a,c, e.

A small number of transverse microcracks are pre-
sent in the coatings. These form due to rapid cooling
of the material after discharge, caused by the difference
in the coefficients of linear thermal expansion between
the coating and the substrate [27]. The absence of lon-
gitudinal cracks and the gradual change in metal
concentrations at the coating-substrate interface indi-
cate strong adhesion of the WC/Ni—Al-Fe coatings
to 35 steel. The coating roughness (R,) ranged from 4.5

2

Cathode mass gain, mg/cm
N W A Gl N ©

—~

Deposition time, min

Fig. 2. Dependence of cathode mass gain
on ESD-NLE duration

1-ANW2, 2 - ANW4, 3 - ANW6
Puc. 2. 3aBrCcUMOCTH IIPUBECa KaTo/a
ot npopomkutensHocTH DUJIHD
1-ANW2, 2 -ANW4, 3 - ANW6

Table 2. Characteristics of WC/Ni—Al-Fe coatings

Tabnunya 2. Xapakrepuctuku WC/Ni—Al-Fe-nokpbITuii

Characteristic ANW2 ANW4 ANW6
Thickness, um 3242+ 1.77 31.48+6.93 32.66 +£2.48
Roughness, pum 4.50+0.90 4.77+1.10 4.51+£0.80
Wettability, deg 80.0 82.1 81.9
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Fig. 3. SEM images and elemental distribution in the cross-section of ANW2 (a, b), ANW4 (¢, d), and ANW6 (e, f) coatings

Puc. 3. COM-u300paskeHust U pacrpeieieHre HIEMEHTOB B IONepedHoM ceueHnt NoKpeitiii ANW2 (a, b), ANW4 (¢, d) u ANWG (e, f)

to 4.77 um and did not depend on the WC powder con-
centration (see Table 2). The contact angle of the coa-
ting surface with distilled water was between 80.0 and
82.1°, significantly higher than that of 35 steel (65.9°).
Thus, the application of WC/Ni—-Al-Fe coatings im-
parts hydrophobic properties to the steel surface.

66

According to Fig. 4, a,c, the large inclusions
correspond to grains of the initial tungsten car-
bide (a-WC). Submicron inclusions formed after
the discharge ceased, during the solidification of the
Fe-W-Ni—-Al-C melt (Fig. 4, b). A similar micro-
structure was previously observed in ESD coatings
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on 35 steel deposited using WC—Co anodes [28]. Thus,
the formation of WC/Ni-Al-Fe coatings via ESD
proceeds through two stages: sintering of refractory
agglomerated WC particles and eutectic crystallization
of the Fe—W-Ni—AI-C melt [29].

The results of X-ray phase analysis of the WC/Ni—
Al-Fe coatings are shown in Fig. 5. The data indicate
that, in addition to WC and W,C, the coatings contain
the intermetallic compound AINi (PDF card #44-1188
from the PdWin database) and a face-centered cubic

150
I@ s

125 - Spectrum /
At. %

= W | 311
= Fe | 44
> 75F -
= Ni| 2.8
172
=
L 50 E
=
Ll

N

[$)]
——77]

e

ol pelow

Energy, keV

Fig. 4. Microstructure images of the cross-section of ANW2
at magnifications of 25,000 (a) and 20,000* (b)

¢ — EDS spectrum corresponding to Fig. 4, a

Puc. 4. 306pakeHust MUKPOCTPYKTYPbI MOIEPEUHOTO CEUEHHUS
o6pasiia ANW?2 npu yeenuuenusix 25 000” () u 20 000” (b)

¢ — DJIC-cnextp K puc. 4, a

(FCC) Fe—-Ni solid solution [30], which serve as
the metallic matrix. The presence of ferro-nickel is
attributed to the high nickel concentration in the ANW2
coating (see Fig. 2, b). The a-WC carbide and W,C sub-
carbide act as reinforcing phases in the metalloceramic
coating. The formation of W,C occurs due to the decar-
burization of WC when it interacts with the iron melt
in the micro-melt pool under electric discharge tem-
peratures [24]. This is supported by an increase in
the W,C content from 14.1 to 24.1 vol. % (Table 3)
as the iron concentration rises from ANW2 to ANW6
(see Figs. 3, b, d, f). Fig. 4, a illustrates the interaction
between a tungsten carbide particle and the iron melt.

The WC phase fraction in the coatings increased
from 48.6 to 65.5 vol. % with the addition of tungsten
carbide powder to the NLE, while the intermetallic frac-
tion decreased from 28.2 to 10.3 vol. %. Notably, such
a high WC content in the coatings cannot be achieved
using conventional single-electrode ESD on steels with
hardmetal anodes, due to the high solubility of WC in
liquid iron [31].

Based on the coating microstructure, the forma-
tion of mechanism of WC/Ni-Al-Fe coating during
ESD-NLE can be described as follows: when a Ni or
Al granule comes into electrical contact with the sub-
strate, low-voltage discharges occur, causing the trans-
fer of molten granule material into the micro-melt
pool on the cathode surface. Tungsten carbide pow-
der particles, located on the electrode surface within
the discharge initiation and propagation zone, become
wetted by metal droplets and are incorporated into

@ WC

m AINi

*® AWC

o (Fe, Ni)

ANW2

Intensity

20, deg

Fig. 5. XRD patterns of the obtained coatings

Puc. 5. PentreHoBckue An(pakTorpaMMbl
MOJTyYEHHbIX TTOKPBITHI
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the micro-melt pool on the substrate, ultimately form-
ing the coating.

Microhardness measurements of WC/Ni—Al-Fe
coatings revealed a monotonic increase in average
values from 7.2 to 10.6 GPa as the tungsten car-
bide powder content in the NLE increased (Fig. 6).
The microhardness of ANW2 and ANW4 samples
remained similar (~7.5 GPa), which can be attri-
buted to their structural similarity (see Figs. 3, a—d).
Literature data indicate that the microhardness
of plasma-clad (NiAl), WC,—Fe(0-15 wt. %) coa-
tings is significantly lower (4—6 GPa) due to their lower
tungsten carbide content [17].

The results of tribological tests of WC/Ni—Al-Fe
coatings are presented in Fig. 6. Depending on the WC
concentration in the coatings, the friction coefficient
varies non-monotonically from 0.61 to 0.73 under
a 25 N load and from 0.62 to 0.70 under a 50 N load
(Fig. 7, @). In both cases, the highest friction force
values were observed for the ANW4 sample. The fric-
tion coefficient of the coatings was 8-31 % lower than
that of 35 steel, demonstrating the anti-friction effect
of tungsten carbide. Additionally, the amplitude of fric-
tion coefficient fluctuations for all coatings was signifi-
cantly lower compared to 35 steel.

The specific wear rate of WC/Ni—Al-Fe coatings
ranged from (36-55)- 10”7 mm?3/(N-m)undera25 N load

Table 3. Semi-quantitative composition of the coatings

Ta6bnuya 3. Iosryko1n4ecTBeHHbIH COCTAaB OKPBITHIA

Phase, vol. %
Sample . .
WC W.C AINi FeNi
ANW2 48.6 14.1 28.2 9.0
ANWA4 61.5 14.9 18.7 4.9
ANW6 65.5 24.1 10.3 -
12

-
[e¢) (=)

Microhardness, GPa
o

4
2
0
35 steel ANW2 ANW4 ANWG6
Samples

Fig. 6. Average microhardness values of the coatings
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and (28-31)-107 mm?3/(N-m) under a 50 N load, which
is 11-24 times lower than that of 35 steel (Fig. 7, b).
Unlike uncoated steel, the specific wear rate of the coa-
tings at 50 N was lower than at 25 N. As the WC pow-
der content in the NLE increased, the specific wear rate
of the WC/Ni—Al-Fe coatings monotonically decreased
under both loads. This trend aligns with Archard’s wear
theory, as it is attributed to the increase in coating hard-
ness. Although the minimum specific wear rate was

1.0
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0.8 35 steel

25N

ANW6 ANW4
0.7
0.6
0.5 ANW2

0.4 | | | | |
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0.8 r
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ANW6 35 steel
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0.6
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b

Fig. 7. Coefficient of friction (a) and wear rate (b) of coatings
compared to steel 35 at loads of 25 and 50 N
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not observed within the tested compositions, further
increasing the WC powder concentration in the NLE
is impractical due to the reduction in cathode mass
gain, iron enrichment of the coating matrix, and deple-
tion of nickel and aluminum concentrations. The wear
rate of plasma-clad (NiAl), WC ,~Fe(0-15 wt. %)
coatings, as reported in [17], was significantly higher
at 6.02-10° mm?*/(N-m). This is likely due to their
lower tungsten carbide concentration and lower hard-
ness. Therefore, the proposed approach for producing
Ni—Al-Fe coatings reinforced with tungsten carbide on
steels appears to be more effective.

Electrochemical corrosion tests of WC/Ni—Al-Fe
coatings were conducted in a 3.5 % NaCl solution
using potentiodynamic polarization and impedance
spectroscopy methods. Fig. 8, a presents Tafel pola-
rization curves constructed from potentiodynamic
experiments. The corrosion potential (£, ) and corro-
sion current density (/) were determined by extrapo-
lating the cathodic and anodic slopes of the Tafel
plots. As shown in Table 4, the corrosion potential
of the coated samples ranged from —0.68 V to —0.57 V
relative to the Ag/AgCl electrode. The highest £
value was observed in the ANW4 sample, indica-
ting its greater resistance to spontaneous corrosion
compared to the other coatings. The corrosion current
density of the coated samples ranged from 3.9-107
to 2.5-10* A/cm?, with the lowest value recorded for
ANW4 and the highest for ANW2. For uncoated 35 steel,
the corrosion current density was 5.5:10 A/cm?. Given
that corrosion rate is directly proportional to 7, it

can be concluded that only the ANW4 coating improves
the corrosion resistance of 35 steel by 29 %.

Fig. 8, b presents Bode impedance diagrams, which
describe the frequency-dependent electrochemical
behavior at the material-electrolyte interface. It is
known that an increase in the impedance modulus
(Ig|Z])) at low frequencies hinders charge transfer,
thereby improving the corrosion resistance of the mate-
rial [32]. The WC/Ni—Al-Fe coatings can be ranked
in ascending order of lg|Z| values as follows: ANW4,
ANW2, and ANWG6. Thus, the sample with the highest
tungsten carbide concentration exhibits the greatest
charge transfer resistance. According to the Bode
plots, the impedance maximum of the steel substrate

Table 4. Corrosion potential and current density
of WC/Ni-Al-Fe coatings in a 3.5 % NaCl solution

Tabnunya 4. IloTeHuaa U MJIOTHOCTH TOKA KOPPO3UH
WC/Ni-Al-Fe-nokpsbIitnii B 3,5 %-1om pacreope NaCl

Parameter 35 steel ANW2 ANW4 ANW6
E .V -0.72 -0.63 -0.57 -0.68
1., uA 54.48 250.84 39.36 142.10

was higher than that of the coatings, indicating their
weaker corrosion resistance. Notably, Ni—Al-Fe coa-
tings without WC demonstrated higher charge trans-
fer resistance [33]. This is likely due to the fact that
conductive tungsten carbide disrupts the continuity
of the AL, O, barrier layer, which forms on the surface
of WC/Ni—Al-Fe coatings in the electrolyte solution.

Overall, the corrosion resistance of WC/Ni—Al-Fe
coatings can be considered weak, likely due to their
relatively high iron concentration (35.5 to 57.6 at. %).
Additionally, as a ceramic material with high electrical
conductivity, tungsten carbide does not provide bar-
rier protection against corrosion. Instead, it may form
galvanic couples at the interface between the metallic
matrix and WC particles.

35 steel

7 1 1 1 1 1
-1.1 -0.9 -0.7 -05 -0.3 -0.1
Potential, vs. Ag/AgCl, B
2.4
b
2.2

N
o

=
4]

35 steel

1g|Z) [Vem’]
o N o
T T

=
(=)
T

0' 8 1 1 1
-2 0 2 4

lg|f| [Hz]

Fig. 8. Polarization curves (a) and Bode impedance plots (b)
of WC/Ni—Al-Fe coatings and 35 steel
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Fig. 9, a presents the results of cyclic oxidation
resistance tests of 35 steel samples with WC/Ni—Al-Fe
coatings at 700 °C. After 110 h of testing, the mass gain
of the coated samples ranged from 8.3 to 39.8 g/m?,
while the steel substrate exhibited a significantly higher
mass gain of 416.2 g/m?. Thus, the application
of WC/Ni—Al-Fe coatings enhances the oxidation resis-
tance of 35 steel by a factor of 10.5 to 49.9. It should be
noted that the mass gain of Ni—Al-Fe coatings produced
without tungsten carbide under similar test conditions
was comparable to the current results [33]. The oxi-
dation resistance of the coated samples increased in
the following order: ANW2, ANW6, and ANW4.

These findings indicate that incorporating up to
65 vol. % WC into the Ni—Al-Fe layer does not
degrade its oxidation resistance. The ANW4 coating
demonstrated the best performance, which aligns with
the potentiodynamic polarization data (see Table 4).
The mass gain during the oxidation resistance test
resulted from the fixation of oxygen on the sample sur-
faces in the form of hematite (Fe,O;) and iron tung-
state (Fe,WO,) (see Fig. 9, b), which forms through
the simultaneous oxidation of iron and tungsten carbide:

WC + 2Fe + 40, = Fe,WO, + CO, .

In addition to these compounds, Fe,W,C and AINi
phases were also detected, further confirming the high
oxidation resistance of the coatings. The Fe,W.C
phase forms due to the recrystallization of W,C during
prolonged high-temperature exposure. Overall, all
WC/Ni—-Al-Fe coatings exhibited high oxidation
resistance at 700 °C, comparable to that of metallic
glasses [34], while also demonstrating greater wear
resistance during wear testing.

Conclusion

For the first time, metalloceramic WC/Ni—Al-Fe
coatings were successfully deposited on 35 steel using
the ESD method with a nonlocalized electrode, com-
posed of nickel and aluminum granules (15 at. % Al
and 85 at. % Ni) with 2, 4, and 6 vol. % WC powder.
The coating matrix consisted of nickel aluminide (NiAl)
and ferro-nickel, while a-WC and W,C inclusions
acted as reinforcing phases. Increasing the WC powder
content in the nonlocalized electrode led to a higher
tungsten carbide concentration in the coatings.

Impedance and polarization experiments in
a 3.5 9% NaCl solution revealed that WC/Ni—Al-Fe
coatings exhibit weak corrosion resistance, while
their cyclic oxidation resistance at 700 °C was 10.5
to 49.9 times higher than that of 35 steel.
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Fig. 9. Cyclic oxidation resistance of coated samples
at 700 °C (a) and XRD patterns of coatings after oxidation
resistance testing (b)
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Microhardness testing showed a monotonic increase
from 7.2 to 10.6 GPa as the WC powder concentra-
tion in the nonlocalized electrode increased from 2
to 6 vol. %. The application of WC/Ni—Al-Fe coatings
reduced the friction coefficient of 35 steel components
by 8-31 % and lowered the specific wear rate by a fac-
tor of 11 to 24.
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