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Influence of gear ratio
on the energy-force conditions
of grinding body collisions in a planetary mill

A. V. Aborkin'®, A. I. Elkin!, V. V. Ryabkova!,
A. P. Bugayov!, A. R. Bobozhanov?, M. I. Alymov*

!Vladimir State University named after Alexander and Nikolay Stoletovs
87 Gorky Str., Vladimir 600000, Russia
2Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
8 Akademika Osip’yan Str., Chernogolovka, Moscow Region 142432, Russia

&3 aborkin@vlsu.ru

Abstract. High-energy milling in planetary mills has found widespread application for tasks such as mechanical alloying/activation,
synthesis of composite powder mixtures, and recycling of chip waste. The transfer of mechanical energy to the processed material
depends, among other factors, on the technological parameters of mechanical processing, which determine the motion of the grinding
bodies and, consequently, the energy-force characteristics of the process. To study the effect of the gear ratio on the energy-force
conditions of mechanical processing, a discrete element model of grinding body motion in a planetary mill was developed, numeri-
cally implemented, and validated. Model parameters were determined to ensure reasonable agreement between the experimental and
calculated structures of instantaneous images of grinding body motion in the steady-state operation of the mill. Using the model,
a series of numerical experiments were conducted, varying the gear ratio K from 1 to 2. It was shown that increasing K within this
range changes the motion pattern of the grinding bodies from a rolling mode to a combination of rolling and free flight. This transition
reduces the number of collisions while simultaneously increasing their force characteristics. An analysis of the changes in total energy
loss during “body—body” and “body—chamber” collisions was performed. It was established that as K increases from 1 to 2, the total
energy loss during collisions primarily increases due to greater energy loss in “body—body” collision pairs. The developed models
and the obtained numerical estimates of the effect of the gear ratio on the energy-force characteristics of collisions can be utilized to
design optimized mechanical processing technology in planetary mills.

Keywords: high-energy milling, discrete element method, energy-force characteristics, collisions, motion pattern of grinding bodies

Acknowledgements: The authors express their gratitude to Prof. A.S. Rogachev for his assistance in organizing and conducting
the experimental study. This research was supported by the Russian Science Foundation (grant no. 23-29-00889, https://rscf.ru/
project/23-29-00889/).
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energy-force conditions of grinding body collisions in a planetary mill. Powder Metallurgy and Functional Coatings. 2025;19(1):
5-14. https://doi.org/10.17073/1997-308X-2025-1-5-14
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W3BECTUA BY30B

BnuaHue nepepatTovyHOro OTHoWeHuUd
Ha dHeprocunoebie ycnoeusd CTOJIKHOBEHUSA
Pa3MOJIbHbIX TE€J1 B nnaHeTapHoﬁ MeJibHULe

A. B. A6opxun'®, A. . Enxun', B. B. PaokoBal,
A.II. Byraés!, A. P. Bo6oxanos?, M. V1. AnpimoB>

I Baagumupekuii rocynapersennblii yausepenter um. A.T. u H.I. CrosieToBbIx
Poccus, 600000, . Bmagumup, ya. ['opekoro, 87
2MHCTUTYT CTPYKTYPHOIT MAKPOKHHETHKH M MPo0aeM MaTepuaioBeaenus um. A.I. Mep:kanosa PAH
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AHHOTB”MH. BBICOKOSHCPFCTI/I‘{CCKEUI 06p360TKa B INIAHETAPHBIX MEJIbHUIIAX HalllJIa IUPOKOE NPUMEHECHUE AT PEIICHUSA 3a/1a4 MEXa-

HHUYCCKOTO J'Iel"I/IpOBaHI/ISI/aKTI/IBaIII/II/I, CHHTE3a KOMITO3UIIMOHHBIX IMMOPOMIKOBBIX cMeceit u nepepa60TKH CTPYKEYHBIX OTXOHOB.
HpI/I 9TOM Hepeaada MEXaHU9IeCKOU OHEpruu B O6pa6aTI)IBaeMOC BCHIECCTBO 3aBUCUT, B TOM HUCJIEC, U OT TEXHOJOIrMYECKUX Mapa-
METPOB MEXaHUYEeCKOI O6p360TKI/I, OINPEACIAIONINX MEXaHUKY JABUKCHUS Pa3sMOJIbHBIX TECJI, a CJICA0BATCIIbHO, U DHEPrOCUIOBBIC
XapakTCPUCTUKHU ITpOIECcca. ,HJ'IS{ U3YUCHUS BIUSAHUSA MEPEAATOYHOIO OTHOIICHMS Ha SHEPTOCUIIOBLIC YCIIOBUST MEXaHUYeCKON o6pa-
0OTKH pa3pa60TaHa, YHCJICHHO p€aji30BaHa U BaJIMAUPOBAHA JUCKPETHO-3JIEMEHTHAas MOACIb NABUKECHUS PA3MOJIbHBIX TECJI B IJIaHE-
TapHOﬁ MCJIbHUIIC. Onpez{eneHLI napaMeTpbl MOACIIH, OGCCHG‘{I/IBa}OHII/Ie Pa3yMHO€ COIIaCOBaHUE 3KCHepI/IMeHTaHLHOﬁ u pacquHofI
CTPYKTYPp MI'HOBEHHBIX I/I3O6pa)KeHI/I171 Pa3sMOJIBHBIX TEJI Ha YCTAHOBUBIIECMCS PEIKUME pa60TI)I MenbHUIEL. C TIOMOIIBKO MOACIIU
IIPOBEACHBI CEPUN YUCIICHHBIX 3KCIIEPUMEHTOB C BAPbUPOBAHUEM IIEPEAATOYHOIO OTHOLICHUS Korl J10 2. HOKa321HO, YTO YyBEJIH-
yenne K B YKa3aHHOM Juaria3oHe BEACT K UBMEHCHUIO XapaKTepa ABUKCHUS Pa3MOJIBHBIX TEJI C PEKUMa IEPEKAThIBaAHU Ha IIEPEKa-
TBIBAHUEC U CBO6OZ[HLII71 TOJIET. DTO CHUIKAET YHCJIO CTOJTKHOBEHUN U OAHOBPEMEHHO obecrieunBaeT POCT UX CUJIOBBIX XapaKTCPUCTUK.
HpOBeﬂeH aHaJIn3 USMCHCHUA CyMMapHOﬁ TMOTEPU SHEPTUH ITPU CTOJIKHOBCHUAX «YaCTULla—vYaCTHLa» U «HaCTULla—KaMepay. VYera-
HOBJICHO, YTO IPpU U3MEHEHHUU Korl J10 2 TOBBITIICHUE CyMMapHOﬁ TMOTEpU SHEPIUU MPU CTOJKHOBCHHAX B OCHOBHOM IIPOUC-
XOIUT 3a CUET YBCJINYCHUSA IOTCPU SHEPTUU IPU CTOJKHOBECHUAX Tap «YaCTULla—vdacCTHULA». Pa3pa6OTaHHLIe MOJICJIN U NOJTYYCHHBIC
PaCUYCTHBIC OLICHKHU BJIMAHUA NEPEAATOUHOIO OTHOMICHUS Ha SHEPTOCUIIOBBIC XapaKTEPUCTUKH CTOJIKHOBEHUM MOTryT OBITH HUCIIOJb-

30BaHbI IpU pa3pa60TKe paHHOHaﬂLHOﬁ TEXHOJIOTHH MEXaHUYECKOU 06pa6OTKI/I B HJ'[aHeTapHOfI MCJIBHUILIC.
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Introduction

Mechanical processing (MP) of solid materials is
widely used to initiate changes in the rates of chemical
and physicochemical processes required for mechano-
chemical synthesis, mechanical alloying, mechanical
activation, and other applications [1]. Typically, MP is
performed in attritors, planetary mills, vibratory mills,
and ball mills. The operating principle of these devices
is based on repeated impulsive mechanical impacts
of grinding bodies on the material, enabling the trans-
fer of mechanical energy into it [2]. Despite the variety
of mechanical impact types, the primary modes include
impact, shear, and their combinations in various pro-
portions, depending on the type of equipment and its
operating conditions [3]. Notably, the type of mechani-
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cal impact promoting mechanochemical transforma-
tions significantly influences their nature [4].

Processing in planetary mills has found widespread
application in solving various technological challenges,
such as mechanical alloying/activation, synthesis
of composite powder mixtures, and recycling of chip
waste, among others [5—7]. Considering the diversity
of these technological tasks, their efficient execution,
while possible with the same equipment (in this case,
a planetary mill), evidently requires the use of different
MP parameters. These parameters include the shape and
size of the grinding media, the filling ratio of the wor-
king chamber, the mass ratio of the processed material
to the grinding bodies, the gear ratio, and the rotation
frequency of the sun wheel. In most cases, the selection
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of these parameters is performed empirically through
trial and error, which can be a labor-intensive and
sometimes infeasible process. Scientifically grounded
parameter selection requires establishing relationships
between these parameters, the amount of mechanical
energy transferred, and the characteristics of the pro-
cessed material. Depending on the task, these cha-
racteristics may include the granulometric and phase
composition, the size of structural components, and
others. Numerical determination of the transferred
mechanical energy, considering the aforementioned
factors influencing the process mechanics, can be
achieved through mathematical modeling of grinding
body motion, for example, using the discrete element
method (DEM) [8-11].

Another significant research direction involves
experimental studies of the kinematics of grinding
body motion in a planetary mill as a function of MP
parameters, conducted, for instance, using high-speed
videography [10; 12]. Comprehensive computational
and experimental studies allow the kinematic data
to be supplemented with energy-force characteristics
of collisions between grinding bodies and the walls
of the working chamber. This provides a more comp-
lete understanding of the processes occurring during
MP, enabling predictions of material properties based
on processing conditions and facilitating the deve-
lopment of rational technologies that ensure reprodu-
cibility of material properties across various equipment
types and scalability.

The aim of this study is to develop, numerically
implement, and validate a model of grinding body
motion in a planetary mill, as well as to investigate
the effect of the gear ratio on the motion pattern and
energy-force characteristics of grinding body collisions.

Experimental and theoretical
research methods

In the experimental part of this study, a laboratory
planetary mill “Activator-2S” (Activator Mechanical
Engineering Plant, Novosibirsk, Russia) and a high-
speed video camera “Phantom Miro M310” (Vision
Research Inc., USA) were used. The planetary mill is
equipped with two cylindrical working chambers posi-
tioned vertically on the sun wheel. One of the chambers
was loaded with 12 steel grinding bodies in the form
of 9 mm-diameter spheres. To limit vertical displace-
ment of the grinding bodies within the working cham-
ber, the chamber height was set at 1.2 times the sphere
diameter. A notable design feature of this mill is
the presence of two independent electric motors driving
the sun wheel and the working chamber at speeds W
and w, respectively. The counter-rotational speeds are

controlled via frequency converters. The video camera
was positioned above the mill, coaxial to the vertical
axis of the sun wheel (see Fig. 1).

For the videography, the steel lids of the wor-
king chambers were replaced with transparent ones.
The recording speed for all experiments was set
to 2000 frames per second. High-speed video recor-
ding was conducted for four values of the speed ratio
of the working chamber to the sun wheel (K = w/W),
specifically K=1.0; 1.2; 1.5; 2.0. In these experi-
ments, only the rotation speed of the working chamber
was varied, while the rotation speed of the sun wheel
remained constant at 694 rpm.

In addition to the experimental studies of grinding
body motion, the process was modeled using the dis-
crete element method (DEM). This method describes
the translational and rotational dynamics of grinding
bodies in the working chamber of a planetary mill using
a stepwise algorithm with constant updates of the posi-
tions of the bodies and the chamber walls. For each
i-th grinding body, a system of two equations of trans-
lational and rotational motion is solved, expressed as
follows:

High-speed —
video camera I:
0

Working b
chamber ~ l
Grinding ‘ ‘
bodies i m
Sun wheel ‘

Fig. 1. Schematic of high-speed videography setup

Puc. 1. Cxema npoBeieH s BBICOKOCKOPOCTHOM BHICOCHEMKI
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The first equation describes the translational motion
of'the center of mass of the grinding body. The variables
m, and v, denote the mass and velocity of the i-th body, ¢
is time, and g is the acceleration due to gravity. The first
term on the right-hand side accounts for gravitational
forces acting on the grinding body, the second term rep-
resents interactions between bodies, and the last term
accounts for interactions between the grinding body
and the chamber walls. The initial velocities of trans-
lational and rotational motion are predefined. Since
the mass of the working chamber significantly exceeds
the total mass of the grinding bodies, the influence
of body-wall interactions on the chamber’s motion can
be neglected, and the motion of the chamber walls is
assumed to be known.

The rotational motion of the grinding bodies in
the planetary mill is described by the second equation
in system (1). The scalar variable 7, denotes the moment
of inertia, while the vector variables @, T, and T/ rep-
resent the angular velocity and torques arising from
the interactions of the grinding body with other bodies
(indexed j) or with the chamber walls. The term M,
accounts for rolling friction forces acting on the grin-
ding bodies.

The interactions between the i-th and j-th bodies
are represented by forces F, and torques T, included
in equation (1) under the summation sign. Summation
over all possible values of j # i eliminates self-interac-
tion, considering only contacting grinding bodies. For
bodies separated by greater distances, the interaction
force is assumed to be zero.

In this study, the calculation of interaction forces
and torques between grinding bodies employed Hertz’s
theory, supplemented by Mindlin’s shear theory
(the Hertz—Mindlin model) [13]. Since the interactions
are not perfectly elastic, an additional dissipative force
is introduced alongside the contact force to account
for energy losses during collisions. Collisions between
grinding bodies and the chamber walls are modeled
similarly, but the curvature of the chamber wall sur-
face is neglected, as the chamber radius is significantly
larger than the radius of each body.

The model parameters include the physical and
mechanical properties of the grinding body material
and the chamber, as well as coefficients characterizing
their contact interactions. These coefficients include
the restitution coefficient (e, ), the static friction coef-
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ficient (pg), and the rolling friction coefficient (u,).
While the physical and mechanical properties of most
structural materials are available as reference data,
determining the coefficients for contact interactions is
an independent experimental task, as addressed in stu-
dies [14—-16]. It should be noted that these coefficients
may depend on factors such as the size and shape regu-
larity (deviation from spherical shape) of the grinding
bodies, as well as the surface roughness of the grinding
bodies and the chamber. Thus, their values require
refinement, which in this study was performed by fit-
ting the model to experimental data.

As an initial approximation, based on recommen-
dations in [17; 18], the following values were used:
ep=0.85, ug=0.45 and p, = 0.02. A series of numeri-
cal simulations replicating the experimental condi-
tions was conducted, varying the contact interaction
coefficients. The agreement between experimental and
simulated results was evaluated based on the alignment
of grinding body position patterns (instantaneous image
structures) in the working chamber. Model validation
was performed by comparing the areas of experimental
and simulated structures of grinding bodies for eight
positions of the working chamber under steady-state
operation of the planetary mill. The fitting results were
deemed satisfactory if the discrepancy (A) between
experimental and simulated data did not exceed
15 % for the same values of the contact interaction
coefficients.

Results and discussion

Table 1 presents typical instantaneous images
of grinding bodies obtained experimentally (column
“Experiment”) and from the simulated results (column
“Simulation”) for various speed ratios of the work-
ing chamber to the sun wheel. Additionally, Table 1
shows images of the areas of experimental and simu-
lated structures of the multiparticle system (column
“Comparison”). Finally, Table I includes numerical
data averaged over 8 positions of the working chamber,
showing discrepancies in these areas (A), which repre-
sent the error of the developed model and characterize
its adequacy.

Analysis of the results presented in Table 1 indi-
cates reasonable agreement between the experimental
and simulated data, with discrepancies not exceed-
ing 13 %. The fitting parameters were consistent
across different speed ratios of the working chamber
to the sun wheel. The values of the coefficients (fitting
parameters) characterizing contact interactions were as
follows: e, = 0.75, ug=0.21 and p, = 0.023. It is note-
worthy that while the values of e, and p, were closely
aligned with or matched those used in modeling in
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Table 1. Comparison of experimental and simulated results

Ta6bnumya 1. ConocrapiieHUe Pe3yJbTATOB SKCIIEPHMEHTA U PACUETHBIX JAHHBIX

K=w/Ww Experiment Simulation Comparison A, %
1.0 | 12.4
1.2 11.9
1.5 9.1
2.0 12.2

studies [19; 20], the value of p, deviated significantly,
exceeding a threefold difference. Nevertheless, pg has
a substantial impact not only on the motion pattern
of the grinding bodies [10] but also on the quantita-
tive energy-force characteristics of collisions, which
largely determine their accuracy. Thus, the developed
model is adequate and can be used to study the effect
of the gear ratio on the motion pattern of grinding
bodies during high-energy ball milling and the energy-
force parameters of the processing.

Using the developed model, the effect of the gear
ratio on the motion pattern of grinding bodies in
the working chamber was studied. The analysis
of the modeling results shows that changing K from 1.0
to 1.5 has almost no effect on the kinematics of grin-
ding body motion. In contrast, a significant change in
the motion pattern is observed when K increases to 2.0.
In the first case (K =1.0+1.5), the motion pattern is
characterized by the cyclic rolling of the grinding
bodies from the first row to the second row. Material
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processing in this mode occurs either by abrasion
between the chamber wall and the grinding bodies
or by collisions between grinding bodies during roll-
ing. In the second case (K =2.0), some grinding bod-
ies move freely relative to the center of the working
chamber. This results in three-row rolling, where two
or more grinding bodies simultaneously jump to the se-
cond row, forming a third row (see Table 1). In this
case, in addition to rolling, a partial mode of free flight
is realized, where some grinding bodies detach from
the chamber wall and are ejected into the free space
of the working chamber, flying freely until colliding
with another grinding body or the chamber wall. This
mode is characterized by the most intense collisions.
However, the number of collisions appears to decrease
compared to the rolling mode.

Estimates of the effect of the gear ratio on the force
characteristics of contact interactions between grinding
bodies and between grinding bodies and the chamber
walls were also obtained. Fig. 2 presents normalized
calculated data on the distribution of collision counts

by compression force and shear force for different gear
ratios.

It can be observed that an increase in the gear ratio
contributes to the growth of the normal collision force
(see Fig. 2, a). Specifically, changing K from 1 to 2
results in a ~5-fold increase in the maximum normal
collision force. A significant differentiation in colli-
sion forces is also evident. For instance, if the total
number of collisions is conditionally divided based on
force into low-intensity (£ < 0.01), medium-intensity
(0.01 <F<0.1), and high-intensity (F>0.1), and
their distribution is compared for different gear ratios
(see Table 2), it becomes clear that at K =1.0+1.5,
the majority of collisions are medium-intensity. In this
range of K, the share of medium-intensity collisions
increases by no more than 6 %.

Simultaneously, a redistribution of collision intensity
occurs. For example, at K=1.0, 32.5 % of collisions
are low-intensity, and only 5.6 % are high-intensity.
At K=1.5, the proportion of low-intensity collisions
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Fig. 2. Changes in normal (@) and tangential (b) collision forces of grinding bodies at different gear ratios
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Table 2. Distribution of collisions (%) by collision force

Ta6nuya 2. Pacnipenesienue ctojkHoBeHni (%) M0 cuiie CTOJIKHOBEHUI

Normal collision force Tangential collision force
K F <001 | 0.01<F <0.1 | F >0.1 | F,<0.01 | 0.01<F,<0.1 | F,>0.1
1.0 32.5 61.9 5.6 314 63.2 5.4
1.2 24.5 63.6 11.9 24.5 66.3 9.2
1.5 12.1 67.8 20.1 13.0 67.1 19.9
2.0 2.4 423 553 1.9 38.7 59.4

decreases to 12.1 %, while high-intensity collisions
increase to 20.1 %. However, as K increases to 2.0, with
the corresponding change in the motion pattern of grind-
ing bodies, the proportion of medium-intensity collisions
decreases to 42.3 %. Conversely, the share of high-
intensity collisions increases to 55.3 %, although their
absolute number significantly declines. A qualitatively
similar pattern was observed for tangential forces (see
Fig. 2, b). It is important to note that at K =1.0+1.5,
most collisions are medium-intensity. Assuming that
these forces are sufficient to create the required field
of mechanical stresses, the activation processing
of material particles may be equally effective at K =1.0
and 1.5. In contrast, processing at K=2.0, despite
the predominance of high-intensity collisions, might be
less effective due to the reduced number of such colli-
sions. This suggests that the K = 2.0 regime is more sui-
table for processing large particles that require greater
forces for deformation and fragmentation.

Fig. 3 presents normalized data characterizing
the total energy loss during “body—body” and “body—
chamber” collisions at different gear ratios, along with
the changes in the number of collisions.
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Analysis of the graphical dependencies presented
shows that as the gear ratio K increases from 1.0
to 2.0, the total energy loss during “body—body” colli-
sions increases by approximately 30 % (see Fig. 3, a).
However, the energy loss during “body—chamber” col-
lisions remains nearly unchanged for gear ratios K from
1.0 to 1.5, and increases by only ~13 % for K =2.0.
This indicates that the increase in total energy loss du-
ring collisions is primarily due to changes (increases)
in energy loss during “body—body” collision pairs.

The number of collisions decreases predictably
with an increase in the gear ratio (see Fig. 3, »). While
the collision count decreases slightly for K = 1.0 and
1.2, it drops significantly at K = 1.5 (by ~1.5 times) and
even further at K = 2.0 (by ~3.1 times). This reduction
in collision count can decrease the likelihood of grin-
ding bodies contacting the processed material, thereby
reducing the processing efficiency. Thus, an increase in
the gear ratio leads to a substantial reduction in the num-
ber of collisions while simultaneously increasing
the specific energy loss per collision. This compensates
for the reduction in collision count and results in a net
increase in total energy loss. Interestingly, for process-
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Fig. 3. Total energy loss during “body—body” (Jl]) and “body—chamber” () collisions (a)
and changes in collision count () for different gear ratios
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ing mixtures of micrometer-sized particles with a high
ratio of grinding body mass to material mass, the par-
ticles tend to accumulate near the chamber wall due
to their ability to pass through voids between grinding
bodies [19]. Consequently, despite the increase in total
energy loss caused by higher K, the use of K = 2.0 may
be less effective than lower K values, as “body—body”
collisions do not contribute to material processing, and
the number of “body—chamber” collisions, despite their
increased intensity, decreases significantly. The effi-
ciency of powder mixture processing at higher K va-
lues could potentially be improved by using a lower
grinding body-to-material mass ratio, where material
particles would be distributed not only near the cham-
ber walls but also around its center. This would make
better use of “body—body” collisions. Another rational
application of the K =2.0 processing regime is for
large particles of millimeter-scale size, where higher
forces are required for particle deformation, such as in
the processing of granular or chip materials.

Conclusion

A model of grinding body motion in the “Ac-
tivator-2S” planetary mill has been developed, numeri-
cally implemented, and validated. The model parameters
ensuring its adequacy were determined by comparing
experimental and calculated data. Analysis of the model
revealed that increasing the gear ratio K from 1.0 to 2.0
decreases the proportion of grinding bodies with limi-
ted mobility and transitions their motion from rolling
to a combination of rolling and free flight. This leads
to an increase in the force characteristics of grinding
body collisions while simultaneously reducing their
count. Despite significant differentiation in collision
forces, the share of medium-intensity collisions remains
nearly unchanged for K=1.0+=1.5 but decreases with
a further increase in K to 2.0, resulting in a higher pro-
portion of high-intensity collisions. Total energy loss
during collisions increases by ~30 % as K changes from
1.0 to 2.0. However, energy loss during “body—cham-
ber” collisions remains unchanged for K = 1.0+1.5, and
the increase in total energy loss is primarily due to higher
energy losses during “body—body” collisions. Based
on the observed effects of the gear ratio on collision pat-
terns and energy-force characteristics of mechanical pro-
cessing, the K = 1.0+1.5 regime can be recommended for
the mechanical processing of micron-sized particles with
a high grinding body-to-material mass ratio. The K =2.0
regime appears more suitable for the mechanical pro-
cessing of larger particles when fragmentation of mix-
ture components is required. The developed model can
be applied to evaluate the energy-force characteristics
of processing in planetary mills during the technology
development stage.
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Abstract. This study examines the effect of quenching and tempering on the structure and mechanical properties of hot-deformed powder
steels containing ultrafine particles. The research analyzes the structural transformations and mechanical responses during quenching
and tempering, focusing on the relationship between heat treatment conditions and the resulting material properties. The experiments
involved variations in quenching temperature and tempering time, allowing the identification of optimal conditions for achieving
a favorable combination of strength and ductility. The findings highlight the potential to achieve a homogeneous microstructure and
high mechanical performance, making these materials suitable for high-load applications. This study underscores the significance of
tailoring heat treatment parameters to control both microstructural and mechanical characteristics, thereby broadening the industrial
applicability of powder steels.
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AHHOTaL‘Hﬂ. PaCCManI/IBaCTCSI BJIMAHUC PEIKUMOB 3aKaJIKU U OTITYCKa Ha CTPYKTYPY U MCXaHHUYCCKHUC CBOMCTBA ropﬂqez{e(bopMHpo-
BaHHBIX IMOPOMIKOBBIX CTaJ'IefI, coAcpiKalux YJIbTpaAuCIEPCHBIC YaCTHUIBI. HCCJ’ICZ[OB&HI/IC OCHOBAHO Ha aHaJIU3€ TCPMHUYCCKUX
1 MEXaHUYCCKUX IPOLCCCOB, MPOTCKAIOUIUX ITPU 3aKaJIKEC U OTILYCKE, a TAKIKEC HUX CBS3U C XapaKTEPOM CTPYKTYPHBIX I/I3MCHCHPII>1,
MIPOUCXOAAIIUX B MaTrepualie. BKCHepHMeHTLI BKJIIOHAJIM Bapyualuyd TEMIIEpATyphbl 3aKaJIKW U BPEMCEHU OTIIYCKa, YTO I[1O3BOJIMIIO
BbISABUTH OINITUMAJIbHBIC PEKUMBI JI JOCTUIKCHUS HAUITYUIINX MEXaHUYCCKUX XapPAKTCPUCTUK — TAKUX, KaK IPOYHOCTDb U IJIaCTUY-
HOCTb. HOJ'Iy‘IeHHLIe PE3YAbTAThl YKa3bIBAIOT Ha BO3MOXKHOCTH JOCTHIKCHUSL BBICOKOU IMIPOYHOCTH, YTO ACJACT 3TU MaTcpualibl
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Introduction

The properties of powder steels can be improved by
complicating their composition and by applying ther-
mal and thermochemical treatments. However, these
methods of enhancing the properties of powder steels
are characterized by certain challenges, primarily
due to residual porosity and chemical and structural
heterogeneity [1].

The influence of the structure of powder steels on
the thermodynamics of new phase nucleation and trans-
formation kinetics can be controlled through manu-
facturing technology. The formation of hot-deformed
powder steels (HDPS) with minimal residual porosity
aligns their critical points more closely with those
of compact materials. The quenching temperature for
powder steels is primarily determined by the critical
points A, (the temperature at which austenite begins
to transform into pearlite or another phase during cool-
ing and where ferrite starts transforming into austenite
during heating) and A ; (the temperature at which fer-
rite begins to transform into austenite during heating —
a key process for achieving the required steel proper-
ties), as well as the carbon content. HDPS are inhe-
rently fine-grained. Alloying with non-carbide-forming
elements does not affect the tendency of austenite
grains to grow at heating temperatures up to 1100 °C.
This feature expands the temperature range for quen-
ching; for HDPS with 0.5 % carbon content, this range
is 825-845 °C [2-5].

The aim of this study is to investigate the quen-
ching and tempering regimes to determine the optimal
mechanical properties of hot-deformed powder steels
containing ultrafine particles.

Materials and methods

The study utilized domestic powders of grades
PZhRV 2.200.26 (TU 14-1-5365-98, water-atomized and
reduced iron powder) and N4D2M (TU 14-5402-2002,
alloyed powder) produced by Severstal PJSC
(Cherepovets, Russia) [4; 5]. Ultrafine additives of sili-
con nitride (Si;N,) and nickel oxide (NiO) produced

16

by Plazmoterm (Moscow, Russia) [6] were added
to the charge.

Before use, the powders were analyzed using
the Analysette 22 MicroTecplus universal laser parti-
cle size analyzer (Fritsch, Germany) and the Beckman
Coulter AU480 submicron particle analyzer (USA).
The charge was prepared using an RT-NMOS5S twin-
cone mixer (Taiwan) and an Assonic SPC ultrasonic
station (China) for sieving and mixing powders with
ultrafine particles. Static cold pressing was per-
formed on a TS0500-6 hydraulic press (China) with
a maximum load capacity of 50 tons using labora-
tory dies. Homogenizing sintering was carried out
in the heat treatment laboratory of the “Materials
Science and Metal Technology” department of DSTU
in an SNOL 6.7/1300 muffle electric furnace (AB
UMEGA, Lithuania) at temperatures ranging from
900 °C to 1150 °C in a protective gas atmosphere
of dissociated ammonia. The sintering time ranged
from 15 to 180 min. Subsequent heat treatment
of the hot-deformed powder steels was conducted
in the same furnaces.

Dynamic hot pressing (DHP) of the billets was per-
formed on a K2232 crank press (Russia) with single-
action operation. Before the DHP operation, powder
billets were heated in a muffle electric resistance fur-
nace (950-1150 °C) in a dissociated ammonia atmo-
sphere. The furnace temperature was monitored using
a platinum-palladium thermocouple [7].

Tensile tests were conducted in accordance with
GOST 18227-85 using an MGS-V15 servo-hydraulic
floor testing machine in automatic mode with a per-
sonal computer. Fig. 1 shows the diagram of the sam-
ple subjected to testing.

The hardness of the samples was measured using
a Rockwell hardness tester (TK-2M, Tochmashpribor,
Ivanovo, Russia) with diamond cone indentation under
a total load of 1471 N.

The samples of PZhRV 2.200.26 + 0.5 % C and
N4D2M + 0.5 % C were subjected to quenching fol-
lowed by tempering after hot re-pressing at = 1150 °C,
with the addition of ultrafine particles (2 % NiO,
0.1 % Si,N,) to each material. Cooling was performed
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Fig. 1. Technical drawing of the sample for tensile testing

Puc. 1. UepTex o0pasia Juist HCTIBITAHKS HA PACTSKCHHE

in water and oil, with cooling rates at the temperature
of minimum austenite stability being 600-500 °C/s
(in water) and 150-100 °C/s (in oil), respectively. The
chemical composition of the studied powders, the char-
acteristics of the ultrafine particles, and the technology
for producing sintered samples are described in detail
in [2].

Results and discussion

Quenching of hot-deformed powder steels (HDPS)
makes it possible to obtain a homogeneous martensitic
structure with high hardness (HV = 7.5 GPa). This is
due to the low porosity and favorable structure formed
during hot pressing.

Fig. 2 shows the microstructure of HDPS based
on PZhRV 2.200.26 powder containing 0.5 % C +
+ 2 % NiO. The martensitic structure is clearly defined,
with a small number of pores up to 3 um in size. This
quenched steel structure does not contain ferrite or
retained austenite, confirming that the quenching
process was conducted correctly [8; 9]. The hardness
of the quenched HDPS at a quenching temperature
of 835 °C is presented in Table 1.

Modification of steels with silicon nitride
increases hardness after quenching. The final forma-
tion of the structure and properties of HDPS occurs
during tempering. The effect of tempering temperature
on the mechanical properties of HDPS is presented in
Table 2.

For all the studied materials, a similar trend in prop-
erty changes is observed: as the tempering tempera-
ture increases, the ultimate strength (o ) and hardness
(HRC) of the steels decrease, while the ductility para-
meter (V) increases, reaching its maximum ¢ = 550 °C.
At this temperature, the overall set of mechanical pro-
perties is superior to those of the initial and annealed
steels [7-9].

The microstructures of quenched and tempered
HDPS N4D2M + 0.5 % C +2 % NiO are shown in
Fig. 3.

Fig. 2. Martensite of hot-deformed powder steel of PZhRV grade 2.200.26 + 0.5 % C + 2 % NiO

Pore size: 1-3 pm

Puc. 2. MapreHcut ropstaeiepopMHpOBaHHO# 1OpomikoBoii cranu Mapku IIDKPB 2.200.26 + 0,5 % C + 2 % NiO

Pasmep mop: 1-3 MM

Table 1. Hardness (HRC) of quenched HDPS
Ta6bnunya 1. Teepaocts (HRC) 3akanennsix [AIIC

Powder steel
PZhRV 2.200.26 PZhRV 2.200.26 PZhRV 2.200.26 N4D2M | N4D2M + 0.5 % C | N4D2M + 0.5 % C
+0.5%C +0.5%C+2%NiO | +0.5%C+0.1%Si,N, | +0.5%C + 2 % NiO +0.1 % Si;N,
Cooling medium
Water Oil
50-52 50-52 54 49-51 49-51 55
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Table 2. Dependence of mechanical properties of HDPS on tempering temperature

Ta6nmya 2. 3aBucumoctb Mexanudeckux cpoiicts I'JIIIC ot TemnepaTypbl 0TIIyCKa

HDPS composition ter;lrgggflﬁz,g" C 6., MPa v, % HRC
250 1180 18 45
PZARY 220026 + 05 % C 0. 2| @
550 760 35 33
250 1230 18 47
PZhRV 2.200.26 + 0.5 % C + 0.1 % Si;N, 43128 Zgg ;2) 2(5)
550 780 35 35
250 1190 19 45
PZhRV 2.200.26 + 0.5 % C + 2 % NiO 4312?) 2431(5) ;g ;%
550 765 35 33
250 1420 16 46
N4D2M + 0.5 % C po oo gl IO
550 1070 32 34
250 1450 17 48
NAD2M 0.5 C + 0.1 % SN, [0 ks
550 1090 34 35
250 1430 16 46
N4D2M + 0.5 % C + 2 % NiO 4312?) }%(7)8 gg ;‘3
550 1080 32 32

Fig. 3. Microstructure of H4D2M + 0.5 % C + 2 % NiO after quenching and tempering at different temperatures
t, °C: 250 (a); 350 (b); 450 (c); 550 (d)

Puc. 3. Mukpoctpykrypa H4II2M + 0,5 % C + 2 % NiO nociie 3aKaJiki 1 OTITYCKa TPH PA3INdHOM TeMIeparype
£, °C: 250 (a); 350 (b); 450 (c); 550 (d)
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15T 65535

3

1, 10" rel. units

Si-K |Fe-K |Ni-K |Cu-K [Mo-L
05 (1943] 36 | 1.1 | 05

Fig. 4. Results of micro-X-ray spectral analysis of powder steel H4D2M + 0.5 % C + 2 % NiO
after heat treatment (quenching and tempering)

Puc. 4. Pe3yabTaTsl MUKPOPEHTI€HOCHIEKTPAIbHOTO aHAIN3a IIOPOLIKOBO CTaIH
H4J12M + 0,5 % C + 2 % NiO nocne npoBeeHUs TepMUUECKOi 00pabOTKH (3aKanka 1 OTITyCK)

Thus, quenching and tempering allow for achie-
ving the desired structure of HDPS [9-11]. The level
of mechanical properties of HDPS depends on the qua-
lity of interparticle bonding formed during the sintering
and hot re-pressing stages. If this bonding is incomp-
lete, it is not possible to improve mechanical properties
through strengthening heat treatment [11; 12].

To monitor the chemical composition of the pow-
der steels obtained after heat treatment (quenching
and tempering), a micro X-ray spectral analysis was
performed using a scanning electron microscope

(S-3400N, Hitachi, Japan) [12; 13]. The results are
presented in Fig. 4.

The presence of all alloying elements in the powder
steel after heat treatment was verified through micro-X-
ray spectral analysis [7; 10; 12].

Fractographic analysis using the S-3400N scan-
ning electron microscope highlighted the characteristic
features of HDPS fractures following heat treatment
(quenching and tempering). The fracture surfaces
of the quenched and tempered HDPS samples are pre-
sented in Fig. 5.

Fig. 5. Fractographs of powder steels with ultrafine particles after tempering
t, °C: 250 (a, c); 550 (b, d)
a,b—H4D2M + 0.5 % C + 2 % NiO; ¢, d — PZHRV 2.200.26 + 0.5 % C + 2 % NiO

Puc. 5. ®pakrorpaMMbl H37I0MOB MOPOIIKOBBIX CTANICH € YJIBTPAJAUCIEPCHBIMU YACTUIIAMH MOCIIE OTITYCKa

t, °C: 250 (a, 6); 550 (0, 2)
a,b—H4J12M + 0,5 % C + 2 % NiO; ¢, d — TIDKPB 2.200.26 + 0,5 % C + 2 % NiO
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An analysis of the fractographs revealed that
the dominant features on the fracture surfaces of HDPS
tempered at #=250 °C are intergranular and trans-
granular cleavages, appearing at different levels and
distinguished by varying sizes of the crack propagation
zones [14-16]. In Fig. 5, a and ¢ steps on large clea-
vage elements are clearly visible, giving the structure
a river-like pattern — a characteristic feature of inter-
granular fracture. On smaller facets, smooth surfaces
formed by crack propagation along crystallographic
planes are observed, which are typical of transgranular
cleavage [17-20]. Discontinuities in both intergranu-
lar and transgranular cleavage zones make it difficult
to identify the preferred site of crack initiation. This
observation indirectly suggests a balance of interatomic
bonding forces within grains and along grain bounda-
ries, indicating the successful formation of intragranu-
lar bonding during HDPS production [2; 12].

Conclusion

The study examined the effects of quenching and
tempering on the structure and properties of HDPS with
ultrafine particles. Maximum hardness at a quenching
temperature of 835 °C was observed in steels with com-
positions ~ PZhRV 2.200.26 + 0.5 % C + 0.1 % Si;N,
(HRC=54) and N4D2M +0.5 % C +0.1 % Si;N,
(HRC =55). Modifying steels with silicon nitride
improved hardness after quenching. For these steels,
maximum ultimate strength values were recorded
at a tempering temperature of 250 °C: ¢ = 1230 MPa
(PZhRV 2.200.26 + 0.5 % C + 0.1 % Si,N,) and
c,= 1450 MPa  (N4D2M + 0.5 % C + 0.1 % Si;N,).
At 550 °C, these steels exhibited maximum ductility
indicators: y =35% (PZhRV 2.200.26 + 0.5 % C +
+0.1 % Si;N,) and y=34% (N4D2M + 0.5 % C +
+0.1 % Si;N,). The addition of 0.1 % Si,N,
increased ultimate strength at 250 °C by 50 MPa
for PZhRV 2.200.26 + 0.5 % C and by 30 MPa for
N4D2M + 0.5 % C. Adding 2 % NiO to both materials
slightly improved strength properties (by 10—15 MPa).

For HDPS tempered at 550 °C, the fracture sur-
faces predominantly displayed a dimpled morphology,
with individual dimples ranging in diameter from 8
to 20 um. The clear resolution of dimple depths and
ridge heights indicates the material’s high capacity
for microplastic deformation at the crack propagation
site [19; 20].

This study demonstrates that strengthening heat
treatment is a key tool for enhancing the mechanical
properties of hot-deformed powder steels. By carefully
adjusting quenching and tempering conditions, it is pos-
sible to improve the material’s strength, ductility, and
hardness. Managing mechanical properties depends

20

on the effective formation of intragranular bonding
during production, which optimizes the microstructure
and significantly enhances the performance of the final
product. The combination of heat treatment and bon-
ding control offers a promising pathway for advancing
the quality and functionality of powder steels. These
findings open new opportunities for developing mate-
rials with tailored properties, which are essential for
modern mechanical engineering and other high-tech
industries [10; 12].
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Evaluation of the stress state
in a cold-pressed seal briquette
for a gas compressor unit

A. A. Jafarova®

Azerbaijan Technical University
25 H. Javid Prosp., Baku, AZ 1073, Azerbaijan

&) afetceferova8@gmail.com

Abstract. The finite element method is employed to analyze the distribution of residual stresses in axisymmetric preforms of a gas
compressor seal at the final stage of compaction. A computational scheme is presented, based on the obtained data on equivalent
stress isolines. The dependence of the stress-strain state on the contact conditions between the compact and the die during pressing
is examined. The obtained data illustrate equivalent stress isolines (MPa) according to the Mirolyubov criterion. It was established
that in various sections, the stress state approaches the critical limit, which may lead to visible fracture of the briquette and delami-
nation of its lateral surface. This finding confirms the results of previous studies on obtaining high-density powder compacts via
single-step cold pressing. When solving the problem of producing a high-density powder component, the initial input data included
a previously known stress distribution in the compacted briquette. Such data can be obtained from widely established methodolo-
gies, particularly for cold pressing in rigid dies for components with complex geometries. The stress-strain state of the powder
briquette was computed at the contact surface between the compact and the rigid die under high and infinite friction conditions. In
certain regions, significant stress levels can provoke hidden or visible failure, such as rupture of the “terminal layer” or delamina-
tion of the lateral surface. The results of numerical investigations are also applicable to low-modulus powder materials compacted
in massive dies. The described method for calculating residual stresses was developed using a specialized IBM software program
and was utilized for stress state analysis of compacted preforms under elastic unloading conditions.

Keywords: cold pressing, residual stress, stress-strain state, finite element method, computational scheme, seal, die, powder material
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OueHKa HanpsA>XeHHOro COCTOSAHUSA
XonofHoMNpeccoBaHHOro 6pmkeTa ynaoTHUTENS
ANA ra30KOMMNPECCOPHOM YCTaHOBKM
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AHHOTaL‘Mﬂ. MeTOZ[OM KOHCYHBIX 3JIEMCHTOB aHAJIU3UPYETCA paCIpPEACICHUE OCTAaTOYHbIX Hal'[pSDKeHI/Iﬁ B OCECUMMETPUYHBIX 3aro-
TOBKax YIUIOTHUTEIS Fa30KOMHpeCCOpHOi/’I YCTAaHOBKM K KOHIY IPECCOBaHUS. HpeI[CTaBJ'IeHa CX€Ma pacyeTra, OCHOBaHHasi Ha
HOHy‘—IeHHOﬁ I/IH(l)OpMaL[I/II/I 110 U30JIMHUAM 5KBHUBAJICHTHBIX HaHpS[)I(eHPIﬁ. I[aeTCf[ 3aBUCUMOCTb Hal'[pﬂ)l(eHHO-Z[e(l)OpMPIpOBaHHOFO
COCTOSAHUS OT KOHTAKTHBIX yCJ'[OBI/Ii/’I IIPECCOBKU C ManPIHeﬁ. Ha ocHoBanun HOJ'[y‘-IeHHOﬁ I/IH(I)OpMaL[I/II/I IOKa3aHbl U30JIMHUH DKBU-
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W3BECTUA BY30B

BaJICHTHBIX Hanpspkenui (MIla) mo kpurepuio Muponaro6oBa. YCTaHOBIICHO, YTO Ha Pa3HBIX Y4acTKaX HAIPSDKCHHOE COCTOSTHHE
ONMM3KO K IIPEfeNbHOMY M MOXKET IPUBECTH K BHIMMOMY pPa3pyIICHUIO OpHUKeTa M PAacCIOCHHUIO €ro OOKOBOH ITOBEPXHOCTH.
DTO MOATBEPKAACT PE3yIBTaThl PAOOT MO MONYYSHUIO BBHICOKOIIOTHBIX MOPOIIKOBBIX NTPECCOBOK ITyTEM OJHOKPATHOTO XOJIOA-
HOro npeccoBanus. [Ipu pemeHnn 3amauyl MOTyYEHHs! BHICOKOIUIOTHOW IMOPOIIKOBOH AeTaly BBOJHOHM MH(OpMaruell sBiIsiIoch
N3BECTHOE paclpesieieHHe HANpSDKCHNI B yIUIOTHEHHOM Opukere. Takue maHHbIE BO3MOXKHO HOJIYYHTh M3 HEKOTOPBIX IIMPOKO
IIPE/ICTABIEHHBIX METOANK, OCOOCHHO JJISI COCTOSIHUSI XOJIOJHOTO MIPECCOBAHUS B TBEPABIX MAaTPHUIAX AETaJICH CIOKHON KOH(H-
rypanuu. [IponsBeneH pacueT HaNpsHKEHHO-IE(OPMUPOBAHHOTO COCTOSHHUS IIOPOIIKOBOTO OpHKETa Ha KOHTAKTHOM MOBEPXHOCTH
IIPECCOBKY C TBEPAOW MaTpUIlell AJIsI BRICOKOTO M Oe3rpaHIMYHOro TpeHHil. Ha HeKOoTOphIX ydacTkax 3HAYMTEIIHLHOE HAIPSDKEHHOE
COCTOSIHUE CITOCOOHO CIIPOBOLUPOBATH CKPHITOE HIIH BHIMMOE Pa3pyIICHNE, HAIPHUMEP Pa3phbiB «KOHEUHOTO CIIOS» I %Ke Paccio-
eHre OOKOBOM MOBEPXHOCTH. Pe3ynbraThl YHCICHHBIX MCCICIOBAHUM MPUEMIIEMBI U Ul HU3KOMOIYIBHBIX HMOPOIIKOBBIX MaTe-
pHAJOB, CIIPECCOBAHHBIX B MACCHBHBIX MaTpunax. OmHcaHHas METOJMKA pacdeTa OCTATOYHBIX HalpshKeHHH ObLta pa3paboraHa
crenuanbHON porpammoii B IBM 1 Obl1a HCIONIB30BaHa IIPH IIPOBEICHUH HCCIIEA0BAHUH HAIIPSDKEHHOTO COCTOSHHS IIPECCYEMbIX

3aroTOBOK B YCIOBUSX YIPYIOH pasrpy3Ku.

KnioueBbie c/ioBa: X0I0HOE NPECCOBAHUE, OCTATOYHOE HAIpPSDKCHUE, HANPSIKEHHO-1e)OPMUPOBAHHOE COCTOSHUE, METOJ[ KOHEUHBIX
5JIEMEHTOB, CXEMa PacyeTa, yIIOTHUTEIb, MATPHILIA, TTOPOIIKOBBIH MaTepHa

BbnarogapHocTy: Pabota BeinonHeHa npu GuHAHCOBOU Tomepxkke Donna Hayku AsepbOaitmkana — rpant Ne AEF-MGC-2024-2(50)-

16/01/1-M -01.

Ans untuposanmsa: [ixadaposa A.A. OrieHKa HAIPSHKEHHOTO COCTOSHUS XOJIOJHOIPECCOBAHHOTO OPHKETA YIUIOTHUTEIS VISl Ta30KOM-
MIPECCOPHON yCTAaHOBKU. M38ecmust 8y306. [lopowkosas memaniypeus: u pyHkyuoHanvhvle nokpvimus. 2025;19(1):23-29.
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Introduction

The production of parts and semi-finished products
from metal and other powders in a closed mold through
cold pressing of unsintered briquettes is accompanied
by the formation of significant technological stresses.
After the upper pressing punch is removed, the bri-
quette in the die undergoes elastic “expansion” , which
primarily occurs due to a sudden change in the stress-
strain state of the “green” compact. As is well known,
such tensile stresses can lead to the failure of an entire
region or the upper layer of the compact [1; 2]. Based
on literature data, it can be noted that the elastic spring-
back behavior in pressed parts remains insufficiently
studied [1-3]. In this regard, considering the afore-
mentioned phenomenon, the development of a meth-
odology for calculating the stress-strain state of com-
pacted products is a relevant problem for predicting
their strength. The quality of sintering is determined at
the stage of the “green” compact, depending on various
temperature regimes of cold pressing and heating con-
ditions. Studies [4—6] have shown that during high-
pressure compaction of iron-based mixtures, gas (air)
evacuation from the compacted briquette becomes
difficult.

The main objective of this study was to analyze
the distribution of residual stresses at the final stage
of cold pressing in axisymmetric powder preforms
of a gas compressor seal.

Residual stress evaluation

The distribution of residual stresses in axisymmet-
ric compacts of the seal was analyzed using the finite

24

element method after punch removal. The analytical
approach is significantly complicated by the physical
nonlinearity of this problem. The proposed algorithm
considers the stress state of the compact at the final
stage of densification, along with the elastic relaxation
of contact (including force and kinematic factors) and
other conditions in the compacted briquettes. High ten-
sile pressures arise, which, upon release of the compact
from the die, lead to significant loosening and even
fracture of the briquette. Therefore, in [7], a device and
method were proposed to enhance air drainage from
the pressing zone during high-pressure compaction
of a powder mixture. Accordingly, obtaining high-
density powder products requires knowledge of resi-
dual stress levels in different regions of the compact.
This information serves as the basis for constructing
a further technological chain for manufacturing high-
density powder products of complex geometry.

During the elastic relaxation process, the stress state
of the compact was determined by formulating a finite
element problem using the finite element method,
which includes:

— the variational Lagrange equation [8—10]:

T

|8 fe) fo)dv- g, Sluls, [Fl ds, =0 ()

—the material equation accounting for initial
stresses:
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€, Considering equations (2)—(4), equation (1) can be

. rewritten in the standard form for the finite element

el =" =[L}{u}, ) method:

SZ

N K] ix} = (Rl + 7], ®
1 0 where [K] is the global stiffness matrix [11]; {R] , =
r = J-[B] %l@v is the nodal force vector arising
Kl 0 from the presence of stresses {c’} in the compact;
or L][ N |F|,dS, is the nodal f

where [L] = 5 is the differential operator; [B]=[L]IN] -H ] s s the nodal forces

0 oz dependent on fr1ct10na1 forces.
o0 0 Thus, the problem formulated in equations (1)—(7)
oz or is reduced to solving the system of linear algebraic

— the displacement approximation equation within
the element nodes is given by:

= = =1 A

XR

— the contact conditions in the “compact—die” sys-
tem, considering frictional forces at the contact surface:

(F},=/lo,}S;. (5)

The kinematic problem (contact condition), which
refers to the necessary unilateral boundary conditions,
is taken into account in the analysis and model con-
struction [11]. For a rigid die, these conditions can be
formulated as “impermeability conditions”:

), =0 lo,), <0, ]
W) =0..[o.)_ <0; ©)
{”r}, <0 .. {Gr}r:R >0, .
) >0 fo.]_ >0, )

In equations (1)—(7), the parameters are defined
as follows: {c}, {€} — tensors of residual stresses and
strains, respectively; {c’} — stress tensor in the compact
at the final moment of densification; {u}s — displace-
ment vector of the element nodes on the friction surface
(between the compact and the die at initial and final
moments); [B], [N] — the elastic constant matrix of the
compact material and the shape function of the finite
element, determined based on [12]; {F} I friction force
acting on the uniform contact surface; {x} — displace-
ment vector of the finite element nodes; f — friction
coefficient; {o, }S— normal stresses at the “compact—
die” contact surface x, T, & — operators of multiplica-
tion, transposition, and variation, respectively.

equations (8), considering the displacement of finite
element nodes [13].

However, due to the uncertainty of vector {R} T
the problem is generally nonlinear. Therefore, an itera-
tive method is proposed, based on sequential solutions
of classical elasticity theory with friction force correc-
tions and validation of constraints (6) and (7) at a spe-
cific stage.

At the first step, the nodal force vector {R} o and
the friction force {R}  are applied to the element nodes,
using the normal stress distribution in the zone {c°}.
Solving equation (8) yields the components {x}, {c},
{g} of the stress-strain state of the compact, correspon-
ding to the removal of the upper punch under the influ-
ence of frictional forces initially acting on the briquette
surface [14]. By adjusting the friction force vector
{o}, to match the updated normal stresses, the proce-
dure is repeated until the desired accuracy is achieved.
Furthermore, as numerical experiment indicates, it
is advisable to verify connectivity conditions, while
the “impermeability” conditions (6) and (7) remain
satisfied throughout the solution process. Ultimately,
after removing the externally applied pressing forces
from the initial stress state {c°}, the residual stress
distribution and strain state of the compact are
obtained [15].

In solving the stated problem, the input data con-
sisted of a previously known stress distribution in
the compacted briquette. Such data can be obtained
from several widely established methodologies, partic-
ularly for cold pressing in rigid dies [16; 17]. A similar
approach was applied in our study.

For example, for H /D = 1.5, where H is the height
of the compressed cylinder and D is its diameter
(Fig. 1), the stress-strain state of a proportionally
cylindrical seal for a gas compressor unit was inves-
tigated [18]. The semi-finished product was obtained
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u, <0

[Py =y
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://1

0 . /K . . .r'
u, >0

{F}y=fo.s,

Fig. 1. Calculation scheme
1 —rigid die, 2 — compact, 3 — mesh
Puc. 1. Cxema pacuera

I — xecTkas MaTpuLa, 2 — IPeCcCoBKa, 3 — CeTKa

by pressing an iron-based composite powder contain-
ing 2 wt. % graphite powder under a maximum pres-
sure of P = 1000 using a punch.

The friction coefficient was determined from
the following relationship

f=A+BcS, ©)

where 4 and B are material constants, and 6 is the mean
pressure in the elements of the contact layer.

In the calculations, the average values of the mate-
rial’s elastic constants were used for the entire volume
of the compact: Young’s modulus £ =4 GPa and
Poisson’s ratio v = 0,4.

The discretization of the axisymmetric preform
was performed using circular elements of triangular
cross-section. The finite element mesh was refined in
regions with the highest stress concentrations, spe-
cifically on the lateral surface and the free end of the
compact [19].

A stress-strain state analysis was conducted for
different force conditions at the “compact-rigid

26

die” contact interface (Fig. 2, a, b): for high-friction
conditions, where the axial displacement of points
on the compact’s contact surface was restricted, i.e.
{”x}sf: 0 and for friction defined by equation (5),

1s infinite.

where {u,| s,

Fig. 2 illustrates the “natural” shape of the preform
after unloading. The dashed lines represent certain sec-
tions of the compact before unloading, while the dotted
lines indicate the positions of the finite element nodes
of the same sections after punch removal.

The calculations show that stress redistribution is
often accompanied by the development of internal ten-
sile stresses [20]. For example, in the zone / elements,
we have ¢, > 0, while in the shaded zone II — ¢, >0,
o, > 0, (see Fig. 2, a), where o, is the highest stress in
the rz-plane, and o, is the mean normal stress (/ — com-
pression zone).

In the elements of the surface layer, both radial
stress (0,) and circumferential stress (G(P) were posi-
tive. Curves [, 2 in Fig. 2 represent variations in
these stresses along the free end surface of the seal.
The stress state of the briquette is characterized by
a well-developed o, > 0 zone under unloading condi-
tions close to real scenarios, by stress concentration
0,>0, 6,>0, in the closed “corners” of the compact,
and by the occurrence of tensile stresses o in the late-
ral layer of the open end (Fig. 2, ¢).

To assess the strength of the compact after elastic
unloading, the Mirolyubov criterion is used in the fol-
lowing form [21]:

I+A
c, = C, + c;,

2

(10)

where o, is the stress intensity, and A = o’ /c, o are
the boundary stresses under simple tension and com-
pression conditions.

Fig. 3 shows the distribution of residual equivalent
stresses ¢, under unloading conditions at A = 0.15 [22].
The highest stress concentration in the compact occurs
in the bottom volume after punch removal: tensile
stresses develop in the wall layers, while compressive
stresses dominate in the central region.

In these regions, the stress state is close to the criti-
cal limit and may lead to either hidden or visible failure,
such as rupture of the “terminal layer” or delamination
of the lateral surface [23].

It should be noted that the results of the numerical
investigations are also applicable to low-modulus pow-
der materials compacted in massive dies.
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Fig. 2. Dependence of the stress-strain state of the compact on contact conditions with the die

a — natural shape of the preform after unloading; b — stress variation on the surface of the free end of the preform;
¢ —tensile stresses in the lateral layer of the free end
I — compression zone, II — stress-free zone
1, 2 — variation of radial and circumferential stresses
h/H, — ratio of the final briquette height to its initial height

Puc. 2. 3aBUCUMOCTb HANPSHKEHHO-1e()OPMUPOBAHHOTO COCTOSIHHS TPECCOBKH C MATPUIIEH OT KOHTAKTHBIX yCIOBUH

a — HaTypaybHas )opMa 3arOTOBKH MOCIIE Pa3rpy3Ky; b — N3MEHEHNE HAIPSHKCHUH Ha IOBEPXHOCTU CBOOOIHOTIO TOPIIA 3arOTOBKH;
€ — pacTATUBAIOIINE HANIPSHKEHUS B OOKOBOM CJI0€ CBOOOIHOTO TOPIIa
I —30Ha cxarusi, IT — 30Ha, cBOOOIHASI OT HANPSHKSHHH
1, 2 — u3MeHeHne PaIMaIbHOrO U OKPYXKHOTO HaNPSDKEHHN
h/H,, — 0OTHOIIEHHE KOHEYHON BHICOTHI OPHKETA K NIEPBOHAYATBHOMH

) _
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Puc. 3. I30miHNM SKBUBAJICHTHBIX HAPSDKCHUI
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[ ] /
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Fig. 3. Isolines of equivalent stresses according

/

to the Mirolyubov criterion

1o kputepuo Muposo6osa

Conclusion

The finite element analysis established the stress-
strain state of the compact at the final stage of cold
pressing. This problem was reduced to solving a sys-
tem of linear algebraic equations while accounting for
the displacement of finite element nodes. It was revealed
that the highest stress concentration in the compact
occurs in the bottom volume after punch removal,
with tensile stresses in the wall layers and compressive
stresses in the central part of the compact.
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Abstract. The crystalline structure of carbon fibers (CF) based on polyacrylonitrile (PAN) and viscose precursors, treated in the tempe-
rature range of 1500 to 2800 °C, was studied using X-ray diffraction analysis and Raman spectroscopy. The objective of the study
was to obtain data on the structure of low-modulus viscose-based fibers, which are widely used as fillers in composite mate-
rials, and to compare the characteristics of CF derived from different precursors. An empirical dependence of the intensity ratio
of the D and G lines (/,,/1;) of the Raman spectra on the treatment temperature was established for carbon fibers based on viscose
and PAN. The crystallite sizes L, and L_ of both types of CF obtained at different treatment temperatures were evaluated. It was
revealed that as the treatment temperature increases, the crystallite sizes L and L, grow, while the interlayer spacing d,,, decreases,
indicating an increase in the degree of graphitization. It was found that viscose-based carbon fibers exhibit a less ordered crystalline
structure compared to PAN fibers processed under the same conditions. Additionally, the true density and elastic modulus of viscose-
based CF were investigated, showing lower values than those of PAN fibers treated at the same temperature. These differences in
the properties and structure of CF are attributed to the microtextured nature of viscose fibers. However, during treatment at 2800 °C,
CF undergo partial graphitization, which significantly reduces structural differences between fibers of both types. Nevertheless,
despite the similarity in crystalline structure, viscose-based CF, even after high-temperature treatment, does not become analogous
to PAN-based fibers.
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Kpuctannuueckas cTpykTypa yrnepoaHbiX BOJIOKOH
Ha OCHOBE NOJIMaKPUIOHUTPUIIA U BUCKO3bI
nocne BbicCOKkoTeMnepaTypHon o6paboTku

B MHTepBane temnepartyp 1500-2800 °C

B. C. Kneycos! %, B. M. Camoitnos’, B. A. Enpuanunosa’,

IO. A. Bynymnn', E. M. InutoByenko?, A. C. IlommaBckas', B. A. Bopouuos'
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AHHOTauMﬂ. MeTO}IaMI/I PEHTIE€HOBCKOT'O Z[I/I(bpaKL[I/IOHHOI‘O aHalin3a 1 CIICKTPOCKOIINU KOM6I/IHaL[I/IOHHOl"O paccesaHus NpoOBEAEHO UCCIIC-

JIOBaHUE KPUCTAITIMYECKOH CTPYKTYphI yrIepoaHslXx BonokoH (YB) Ha ocHoBe mommakpmionutpuna (ITAH) u Buckossl, 06pado-
TaHHBIX B auanazone temmneparyp ot 1500 go 2800 °C. Ilenbto ucciaeqoBanus ObUIO MONTYYCHHUE JAHHBIX O CTPYKTYPE HH3KOMO-
JIYJTBHBIX BOJIOKOH HA OCHOBE BHCKO3bI, IMEIOIINX HINPOKOE MPHMEHEHHE B Ka4eCTBE HAMOJIHUTEIICH KOMITO3HI[OHHBIX MaTepPHAIOB,
a TaKk)Ke CpaBHEHHUE XapaKTepUCTHK ¥ B Ha 0cHOBE pa3HBIX IpeKypcopoB. [lomydena sMmmupudeckas 3aBUCHMOCTb OTHOIICHWSI HHTCH-
cusHoctet muunit D u G (I,,/1;) cIeKTPOB KOMOMHAIIMOHHOTO PACCESHUs OT TEMIEPATYPhl 00PaOOTKH JIsl YIIEPOIHBIX BOJOKOH
Ha ocHoBe Bucko3bl 1 [TAH. TIpoBenena orenka pa3mepos KpucTauTos (L u L) 06oux Tumos YB, NONTyYeHHBIX MPU Pa3THIHBIX
TeMIieparypax 00paboTku. BEIIBIIEHO, UTO C pOCTOM TeMIlepaTypbl 00pabOTKH BOJIOKOH IPOUCXOJIUT YBEIMUYECHIE PAa3MEPOB KPHCTAI-
JUTOB L U L, a MEXCIIOEBOE PACCTOSHUE (d,)),) YMEHBIIAETCS, YTO YKA3BIBACT HA MOBBIICHUE CTEEHH IPAUTAIMH. YCTAHOBIIEHO,
YTO yIJIEPOJHBIC BOJIOKHA HA OCHOBE BHCKO3BI IMEIOT MEHEE COBEPIICHHYIO KPHCTAUTMUYECKYIO CTPYKTYpY 10 cpaBHeHHIO ¢ [TAH-
BOJIOKHaMH, 00pabOTaHHBIMU B TeX K€ yCJIOBHsX. Takke OBUIH MCCIIeIOBaHBI HCTHHHAS IUIOTHOCTh U MOAYNb yNpyroctd ¥YB Ha
OCHOBE BHCKO3BI, y KOTOPBIX OKa3aJHCh Oojiee HU3KHe 3HaueHus, 4yeM y [IAH-BosokoH ¢ Toii xe TeMneparypoit 00paboTku. JlaHHbIE
pa3nuuMsl B CBOMCTBaxX M CTpyKType YB 00yclIoBIEHB MHKPOTEKCTYPUPOBAHHOCTBIO BUCKO3HOTO BOJOKHA. OIHAKO B Iponecce
obpaboTku mpu Temmeparype 2800 °C VB mnpeTeprneBaroT 4acTUUHYIO rpadUTaIUI0, YTO B 3HAYUTEIBHOU CTCTICHH HUBEIUPYET
CTPYKTYpHBIE Pa3iIM4Hsl MEKTy BOJIOKHAMU 000MX BUIOB. TeM He MeHee, HeCMOTPsI Ha CXOZICTBO KPUCTAIIMIECKOH CTPYKTyphl, YB

Ha OCHOBE BHCKO3bI JIaKe TI0CIIC BEICOKOTEMITEPATypHOH 00paboTKH He cTaHOBsATCs aHanorom ITAH-BonokHa.

KnioueBbie c/ioBa: yriepoiHble BOJIOKHA, PEHTTeHO(a30BbIi aHAIN3, PAMAHOBCKAs CIIEKTPOCKOTHS

Ana yntuposanms: Kneycos b.C., CamoitnoB B.M., Ensaanunosa B.A., Bynymmu J.A., JIutoBdenko E.M., TToruasckast A.C., Bo-
ponoB B.A. Kpucraminueckas CTpyKTypa yIIEpOJHBIX BOJIOKOH Ha OCHOBE TOJMAKPUIOHUTPHIIA U BUCKO3BI MOCIIE BBICOKOTEM-
nepatypHoii 06padotku B nHTepBane temmneparyp 1500-2800 °C. Hzeecmus 6y306. [Topowikosas memannypeus u QyHKYUOHATbHbLE
nokpwimus. 2025;19(1):30-39. https://doi.org/10.17073/1997-308X-2025-1-30-39

Introduction

The development of carbon fiber-reinforced
plastics has led to the production of a wide range
of carbon fibers (CF) [1-6]. The existing classifica-
tion divides all CF into several types based on their
modulus: low-modulus (30-100 GPa), intermediate-
modulus and high-strength (200-350 GPa), high-
modulus  (350-500 GPa), and ultra-high-modu-
lus (500-1000 GPa) [6-11]. Another critical factor in
classifying fibers is the precursor type, which deter-
mines the crystalline structure of CF and, ultimately, its
final properties [6—11]. Currently, nearly all commer-
cially produced CF are derived from three main precur-
sors: polyacrylonitrile (PAN), isotropic and mesophase
pitches, and viscose [6—11].

The crystalline structure of PAN- and mesophase
pitch-based CF has been extensively studied using
X-ray diffraction, often in combination with Raman
spectroscopy and electron microscopy [12-17].
However, the structure of viscose-based fibers remains
underexplored. Existing data in early literature [18; 19]
pertain to the technology for producing intermediate-
and high-modulus viscose-based CF, developed over
50 years ago in the United States. Studies on the crys-
talline structure of low-modulus (30-100 GPa) vis-
cose-based CF are extremely limited [20-22], despite
their widespread use as fillers in composite materials
for various applications.

The aim of this study was to investigate the crys-
talline structure of viscose-based carbon fibers and its
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changes during high-temperature treatment, with a com-
parative analysis of similar data for PAN-based CF.

Materials and methods

For this study, semi-finished products of TGN-brand
viscose-based CFs and UKN-type PAN-based CFs,
both manufactured in the Russian Federation, were
used. The samples were obtained by additional heat
treatment (HT) of CF bundles in a laboratory Tammann
furnace under argon atmosphere in a free state (without
tension). The heating rate was 300 °C/h, and the dwell
time at the target temperature was 20 min. The process-
ing temperature was monitored using a pyrometer.

The true density of the obtained CF samples was
measured using the gradient tube method in accor-
dance with GOST R ISO 10119-2012. The average
filament diameter, tensile strength, and dynamic elastic
modulus of single filaments were measured according
to ASTM D4018-11. The physical and mechanical
properties of CF were determined as averages from
25 measurements of tensile strength and elastic modu-
lus, following GOST 6943.5-79 and GOST 28008—88.

Raman spectra of CF subjected to various HT
temperatures (#,;) were recorded from the Ilate-
ral surface of filaments in the broad spectral range
of 700-3000 cm™! using a confocal Raman microspec-
trometer Via Reflex (Renishaw, UK) equipped with
an optical microscope and a cooled CCD detector.
The laser spot size at 100x magnification was 0.5 pm.
The excitation source was a diode-pumped solid-
state Nd:YAG laser with a wavelength of 532 nm and
a power of 1 mW.

In the first-order spectrum (1000-2000 cm™),
carbon materials, including CF, typically exhibit two
characteristic bands [30; 31; 34]. One is the band
at v=1580 cm™!, allowed by Raman scattering and
corresponding to the ideal graphitic vibrational
mode with E,, symmetry, often referred to as the G
mode [23-27]. It is associated with in-plane vibrations
of carbon atoms in graphene layers and relates to car-
bon atoms in an sp’-hybridized state. The other band,
at v=1360 cm™!, is due to disordered carbon atoms,
corresponds to lattice vibrations with 4,, symmetry,
and is called the D mode [23—-27]. This mode is linked
to carbon atoms in sp?- and sp? hybridization states,
typically localized at defects or the edges of graphene
layers [23-27]. The D band is absent in monocrystal-
line graphite, and its increasing intensity is considered
indicative of a higher content of disordered or periph-
eral carbon [23-27]. According to numerous studies,
for crystallite sizes up to 2 nm, the ratio of the inte-
grated intensities of these bands (/,/I;) depends
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on the defect concentration and follows the Ferrari
equation [28; 30-32]. For crystallite sizes larger than
2 nm, the 1, /I, ratio is determined by the average dis-
tance between defects. In graphitizing carbon mate-
rials, it can characterize the average crystallite size
(L,) using the Tuinstra-Koenig relation [29-31]. For
the studied CF, L, was calculated using the following
equation:

= > (1)

where C(A) is a constant dependent on the laser wave-
length. Thus, C(A =532 nm) is approximately equal
to 4.4 nm [23; 24; 27].

The interpretation of the secondary 2D band
(v=2700 cm™") is more complex. This band appears
at a sufficiently high degree of crystalline structure
perfection and typically consists of several compo-
nents [24; 27]. However, for the purposes of this study,
only the ¢, (heat-treatment temperature) at which
the 2D band appears was recorded.

X-ray phase analysis was conducted using
a D8 Advance diffractometer (Bruker, Germany).
A copper X-ray tube with a maximum power of 2200 W
and CuK  radiation (A =0.15418 nm) was used as
the X-ray source, in Bragg—Brentano geometry (reflec-
tion mode). X-ray diffraction patterns were recorded
over the angular range of 26 = 10+90°, with a scanning
speed of 2°/min and a step size of 0.02°. The fibers were
placed on a low-background silicon holder, evenly dis-
tributed over its surface. Before each measurement,
the tube and detector were initialized. The diffraction
patterns were processed using the specialized TOPAS
software. The absolute error in measuring the angu-
lar positions of diffraction peaks did not exceed
+0.026° [33]. The interplanar spacing (d,,,) was calcu-
lated based on the center of gravity of the (002) peak
using the Wulff-Bragg equation:

A

. >
2sin 0,

@

dooz =

where A is the wavelength of the X-ray radiation and
0, 1s the diffraction angle determined from the center
of gravity of the (002) reflection.

The crystallite sizes were calculated using
the Scherrer formula:
ke
ST A3)
Pcos By,

where B is the full width at half maximum (FWHM)
of the (002) reflection, and £ = 0.89 [32; 33].



Pon e

POWDER METALLURGY AND FUNCTIONAL COATINGS. 2025;19(1):30-39
Kleusov B.S., Samoilov V.M., and etc. Crystalline structure of polyacrylonitrile- and viscose-based ...

Results and discussion

Fig. 1 presents photographs of PAN- and viscose-
based CF filaments treated at processing temperatures
tyr = 1200 and 2800 °C. It is evident that the micro-

.
0.§ pm

I

structure of the fracture surface and the lateral surface
of the filaments of the studied CF at ¢, = 1200 °C show
minimal differences. However, the fracture surface
photographs of the CF after heat treatment at 2800 °C
exhibit pronounced differences.

9.74 um

A
.i -
- .. /\

5.35 um

Fig. 1. Photographs of viscose-based CF (a, b) and PAN-based CF filaments (c, d) at
= 1200 °C (a, ¢) and 2800 °C (b, d)

Puc. 1. ©otorpadun punamentoB YB Ha ocHOBe Bucko3ssl (@, b) u ITAH (¢, d)
t10 = 1200 °C (a, ¢) u 2800 °C (b, d)
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The dependencies of the true density of CF filaments
(v, g/ecm?) and the dynamic elastic modulus (E, GPa)
on the processing temperature of the studied fibers are
shown in Fig. 2. It can be seen that viscose-based fibers
exhibit lower values of y and £ compared to PAN-based
CF across the entire range of #,,,. Notably, the elastic
modulus of viscose-based fibers is 4-5 times lower
than that of PAN-based fibers throughout the tempera-
ture range.

Fig. 3 shows the X-ray diffraction patterns and
Raman spectra of the studied CF with varying process-
ing temperatures, while Fig. 4 illustrates the depen-
dence of their crystalline structure parameters on 7.

Itis evident that the increase in intensity and narrow-
ing of the (002) diffraction line indicates an improve-
ment in the crystalline structure with increasing ;.
for both viscose- and PAN-based CF (Fig. 3, a, b).
The asymmetry of the diffraction peak can be effectively
described by multiple structural components [34-35];
however, this study provides averaged data for one
of these components.

In the Raman spectra of the studied CF (Fig. 3, ¢, d),
the D and G bands become narrower with increasing 7,,,,
and the relative intensity of the D peak decreases. After
heat treatment at £ ~ 1800 °C, the 2D peak appears, and
its intensity relative to the G peak increases with rising
processing temperature.

However, after heat treatment at 2800 °C, the diffe-
rences in the crystalline structure parameters of vis-
cose- and PAN-based CF become insignificant or dis-
appear entirely (see Fig. 3), except for the crystallite
size L, (see Fig. 4).

2.0
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Fig. 5 shows the dependencies of Raman spec-
troscopy parameters for viscose-based CFs (/) and
PAN-based CFs (2) on the processing temperature.

It is evident that the positions and widths of the D
and G bands systematically change with increasing
t,r- In accordance with the results of previous studies,
the dependence of the 7, /I, parameter was previously
used by us to evaluate the effective processing tempe-
rature of PAN-based CFs [36].

Using a similar approach, empirical expressions
for determining the effective processing temperature
(t.4> °C) of PAN-based (4) and viscose-based (5) CFs
were derived based on the obtained dependencies
of the /,)/I . parameter on 7., (see Fig. 5, a):

f5 =2089 — 9011n 12 , 4)
IG
ID
fyr =1815—| 641In =L |. )
G
Conclusion

The results of the study indicate that viscose-
based carbon fibers (CFs) exhibit a significantly lower
degree of crystalline structure perfection compared
to PAN-based CFs across almost the entire range
of heat treatment temperatures. However, high-tempe-
rature treatment at 2800 °C largely mitigates these dif-
ferences, suggesting partial graphitization of viscose-
based CFs. Nevertheless, as evidenced by the full set
of obtained data, despite the similarity in most crys-
talline structure parameters, viscose-based CFs do not

500
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tyr> °C

E, GPa

Fig. 2. Dependence of true density («) and dynamic elastic modulus (b)
on the processing temperature for viscose-based (1) and PAN-based (2) carbon fibers
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Fig. 4. Dependence of crystalline structure parameters on the processing temperature of fibers based on viscose (1) and PAN (2)

a — crystallite size L ; b — crystallite sizes L ; ¢ — interlayer spacing d,
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become equivalent to PAN-based CFs even after high-
temperature treatment. The elastic modulus of viscose-
based CFs does not exceed 100 GPa, which is over four
times lower the elastic modulus of PAN-based CFs sub-
jected to identical treatment conditions. The true den-
sity of viscose-based CFs remains significantly lower
compared to PAN-based CFs (see Fig. 2, a), indicating
the distinctive nature of their porosity.

These differences, in our view, can be attributed
to the inherently low degree of microtexturing in
viscose-based CFs compared to PAN-based CFs and,
to an even greater extent, to mesophase pitch-based
CFs [19; 37]. The closest counterpart to low-modulus
viscose-based CFs are fibers produced from isotropic
pitches [10], which similarly exhibit reduced true den-
sity and microtexturing.

Based on previous studies [7; 22], which found no
significant differences in the properties of the raw vis-
cose fibers used for CF production, it can be inferred
that the low elastic modulus of the investigated viscose-
based CFs is primarily due to the absence of inten-
sive orientational stretching during the graphitization
process.
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Research of heat-resistant glass-ceramic coating
characteristics in high-speed air plasma flow

A. N. Astapov! %, B. E. Zhestkov?, A. S. Rtishcheva?

! Moscow Aviation Institute (National Research University)
4 Volokolamskoe Shosse, Moscow 125993, Russia
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Abstract. The results of studies of thermophysical and operational characteristics of heat-resistant glass-ceramic coating on 12Cr18Nil0Ti
steel in high-speed air plasma flow are presented. The coating was obtained using the slurry-firing technology. The heat treatment
was carried out in air at 1400 K for 3 min. The structure of the coating is represented by a matrix based on barium silicate glass with
Cr, 0, particles evenly distributed within it. The outer layer of the coating, ~3-+5 um thick, contains many highly dispersed crystals of
BaSi,0, doped with Cr and Mo, indicating the surface glass phase crystallization. The heat capacity, thermal diffusivity and thermal
conductivity of the coating in the temperature range of 293-573 K and at a pressure of 10° Pa vary in the ranges of 0.68-0.75 J/(g'K),
0.47-0.43 mm?/s and 1.198-1.222 W/(m-K), respectively. The average values of coating’s specific mass loss and entrainment rates
during air plasma flow at a velocity of ~3.5 km/s and heating of the surface to 1593 K were 7.2 mg/cm? and 25.9 mg/(cm?-h).
The spectral emissivity of the coating at a wavelength of 890 nm and the rate of heterogeneous recombination of flux atoms and
ions on its surface were 0.85+0.02 and 1443 m/s. Glass phase provides effective protection of steel from high-temperature oxida-
tion and self-healing of defects. Refractory Cr,O, particles along with surface’s glass phase crystallization increase the resistance
of the coating to erosion entrainment in the high-speed air plasma flow, its emissivity and catalyticity. The reduction of the thermal
conductivity of the coating to 0.04+0.01 W/(m-K) at a temperature of 1054+10 K and a pressure of ~200 Pa is experimentally estab-
lished and confirmed by numerical modelling. The explanation of the effect is presented.

Keywords: glass enamel, glass-ceramic coating, heat resistance, oxidation, emissivity, catalyticity, gas dynamic tests, modeling
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UccnepoBaHue xapakTepuCTUK
XKapOCTOMKOro CTEKIIOKEPaMUUYECKOrO NOKPbITHS
B CKOPOCTHOM MOTOKE BO3AYLUHOW MNJla3Mbl

A. H. Acranos! %, B. E. JKectkos?, A. C. Prumesa?

' MockoBcknii aBHATMOHHBIN HHCTATYT (HAMOHAIBHBII HCCIIE0BATEILCKAI YHHBEPCUTET)
Poccus, 125993, . Mocksa, Bonokonamckoe miocce, 4
2TleHTpajbHBIH 23POrHAPOIMHAMUYECKHIT MHCTATYT UM. mpodeccopa H.E. JKykoBckoro
Poccus, 140180, Mockogckasi 001, I. XKykoBckuid, yi. XKykoBckoro, 1

&) lexxal985@inbox.ru

AHHoTayums. TlpencTaBieHbl pe3yJbTaTbl MCCIENOBAHMN TEIUIOU3NUECKUX M OIKCIUTYaTAlMOHHBIX XapaKTEPHCTUK IKAPOCTOU-
KOTO CTeKJIoKepamuiyeckoro mokpbITus Ha ctand 12X18H10T B ckopocTHOM MOTOKE BO3AYIIHOW TuiazMmbl. IlokpbiTHe momyyanu
[0 HITMKePHO-00KUIOBOM TEXHOJOTUH. TepMHuuecKyio 00paboTKy MpOBOIMIM Ha Bo3ayxe mpu Temmeparype 1400 K B Teuenne
3 MuH. CTpyKTypa MOKPBITHS NPEACTABICHA MaTPULICH HA OCHOBE 0apHEeBOCHIMKATHOTO CTEKIA C PABHOMEPHO PACIIPE/Ie/ICHHBIMHU B
neM yactunamu Cr,O;. HapyKHBIA CIIOH MOKPBITHS TOJIMMHON ~3+5 MKM COIEPKMT MHOXKECTBO BHICOKOMCIIEPCHBIX KPUCTAJIIIOB
BaSi,0,, nerupopannbix Cr u Mo, CBUIETEBCTBYIOIIMX O HOBEPXHOCTHOM CUTAIM3alMK cTek10(asbl. TennoeMKkocTs, Temnepary-
POTPOBOZHOCTD M TETLIONPOBOAHOCTH TIOKPBITHS B HHTEpBasie TemMmeparyp 293-573 K npu nasnennn 103 [1a nsmensiores B quana-
3onax 0,68-0,75 JIx/(r'K), 0,47-0,43 mm?/c u 1,198-1,222 B1/(M-K) coorBeTcTBeHHO. CpeiHne 3HAUEHHS YAEIBHON MOTEPU MACCHI
U CKOPOCTH YHOCA MOKPBITHA IPH O0TEKaHUH BO3AYLIHOW IJIa3MOI CO CKOPOCTHIO ~3,5 KM/c M HarpeBe mosepxHocT A0 1593 K
cocrapwin 7,2 mr/em® u 25,9 mr/(cm?-4). CrekTpaibHas W3dydarTelbHas CIOCOOHOCTh TOKPBITHS Ha JUIMHE BOJMHBI 890 HM
U CKOPOCTh F€TePOTreHHOI PeKOMOMHAIINK aTOMOB U HOHOB MOTOKA Ha ero noBepxHocTr coctaBuan 0,85+0,02 u 14+3 m/c. Crexito-
(asza obecreurBaeT APpHEKTUBHYIO 3aLIUTY CTAIH OT BBHICOKOTEMIIEPATypHOrO OKHMCICHHS U camo3aiednBaHue aepexros. Tyro-
miaBkue yacTuipl Cr,O; Hapsy ¢ MOBEPXHOCTHON CHTaLIM3aIUeH cTek10(asbl HOBBIIAIOT CONPOTHBICHAE MOKPBITHS 3PO3UOH-
HOMY YHOCY B CKOPOCTHOM ITOTOKE BO3/YIIHO} TJ1a3MBbl, €0 U3JIy4aTeIbHyI0 CIOCOOHOCTh M KaTAINTUYHOCTb. DKCIIEPUMEHTAIBHO
YCTaHOBJICHO U MOATBEPKICHO YMCICHHBIM MOJCIHPOBAHIEM CHIDKEHHE TeIIONPOBOAHOCTH MOKpbITHs 10 0,04+0,01 B1/(M-K) mpu
temmeparype 1054410 K u gaBnennu ~200 ITa. [Ipencrasneno oobsicuenne addexra.

KnioueBble cnosa: CTEKJIOOMAJIb, CTEKJIOKEPAaMHUYECKOE IOKPLITUE, )KapOCTOﬁKOCTB, OKHUCJICHUE, U3IyvaTe/ibHas CHOCO6HOCTL,
KaTaJIUTUYHOCTD, Ia30AMHAMUYCCKHUE UCIIbITAaHU, MOACIIMPOBAHUE

BnarogapHocTu: VicciemoBaHue BBINIONHEHO 3a cdeT rpanTta Poccuiickoro maygnoro ¢omrma Ne 22-19-00352, https://rscf.ru/
project/22-19-00352/.

Ansa umtuposarHusa: Acranos A.H., XKectkos B.E., Prumesa A.C. VccnenoBanue XapaKTepHCTHK KapOCTONKOTO CTEKIIOKePAMUIECKOTO
HOKPBITHS B CKOPOCTHOM MOTOKE BO3AYIIHOW TIa3Mbl. M3gecmust 6y306. [lopowkosas memaniypeus u QyHKYUOHATbHbIE NOKPbIMUSL.
2025;19(1):40-57. https://doi.org/10.17073/1997-308X-2025-1-40-57

roughness, corrosion-erosion pitting, and cavity forma-
tion. These factors, in turn, contribute to greater gas tur-
bulence in boundary regions and intensify the erosion-
induced material degradation. Protecting alloys from
high-temperature gas corrosion and erosion using thin-
layer heat-resistant coatings is often the only viable
method to maintain their high-temperature strength and
functional properties. For this purpose, silicate-based
glass-ceramic and glass-crystalline coatings are widely
employed.

Introduction

High-temperature gas corrosion of alloyed steels
and nickel-based alloys is accompanied by the for-
mation of scale on their surface, consisting of phases
with variable compositions, as well as internal oxi-
dation zones within the subscale layers. This process
leads to the depletion of alloying elements, particu-
larly Nb, Mo, and W in alloys, and decarburization in
steels [1; 2]. These changes in chemical composition,
in turn, result in the degradation of the mechanical
properties and operational performance of the mate-
rials. The challenges become significantly more severe

The compositions of frits (granulated glass ena-
mels) for glass-ceramic coatings used to protect steels

when alloys are exposed to high-velocity flows of oxy-
gen-containing gases [3]. Under such conditions, oxi-
dation processes accelerate, leading to the degradation
and delamination of the oxide films formed on the sur-
face. Additionally, the development of surface micro-
relief becomes more pronounced, resulting in increased

and nickel alloys from high-temperature gas corrosion
generally contain the following main components,
wt. %: 25-85 Si0,, 20-50 BaO, 0-20 B,0,, 0-5 Al,O,,
0-3 MgO, 0-5CaO [4]. To improve the adhesion
properties of the formed coatings, frits include small
amounts of adhesion-promoting oxides such as CoO,
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NiO, MnO, and MoO;. To enhance the functional
properties of the coatings (chemical resistance, ero-
sion resistance, blackness degree, heat reflectivity,
etc.), fillers such as Cr,0,, Al,O,, TiO,, ZrO,, ZrSiO,,
SiB,, SiC, and others are introduced either through
the charge during frit production or as milling additives
during slurry preparation.

At present, an extensive range of resource-efficient
glass-ceramic coatings has been developed, ensu-
ring the operability of the studied materials at tem-
peratures of 1150-1373 K for prolonged periods and
up to 1473 K for short-term exposure, including in
high-speed aggressive gas flows [4—6]. Among these
developments, the majority are heat-resistant coatings
designed for the effective protection of components
and assemblies of gas turbine engines and turbopump
units [1; 6-11]. However, technical solutions aimed
at improving the reliability of structural elements in
liquid rocket engines (for manned and cargo spacecraft,
space stations, etc.) remain relatively scarce [5; 12].
There are virtually no developments in the field
of protecting heat-loaded components of airframes for
high-speed maneuvering aircraft and their propulsion
systems [13—15]. This is primarily due to tempera-
ture-time factors that significantly limit the applica-
bility of traditional structural materials in so-called
hot structures. The challenge of ensuring short-term
operability of steels and nickel alloys at temperatures
of 1523—-1573 K under high-speed flows (air, combus-
tion products) remains highly relevant.

A previous invention [15] described a heat-resistant
glass-ceramic coating with enhanced resistance to ero-
sion in high-speed gas flows, providing effective pro-
tection of steels and nickel alloys during long-term
operation at temperatures up to 1273 K (over 1000 h)
and short-term exposure up to 1623 K (at least 15 min).

The objective of this study was to investigate
the thermophysical and operational characteristics
of this coating under high-speed air plasma flow condi-
tions at surface temperatures reaching 1593 K.

1. Materials and methods

The starting components for frit production included
silicon oxide (SiO,) powders (particle size <20 pm,
purity 99.9 %), barium oxide (BaO) (<63 um, 98 %),
calcium oxide (CaO) (<63 um, 98 %), chromium oxide
(Cr,0,) (<10 pm, 99.9 %), aluminum oxide (Al,0,)
(<10 um, 98.5 %), cobalt oxide (CoO) (<45 um,
98 %), titanium oxide (TiO,) (<20 um, 99.8 %), man-
ganese oxide (Mn,0O;) (<20 um, 99 %), molybdenum
oxide (MoO,) (<3 um, 99.9 %), and silicon tetrabo-
ride (SiB,) (<10 pm, 99.9 %). The components were
mixed according to [15] and ground in a Pulverisette-5
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planetary mill (Fritsch, Germany) using a 500 mL ZrO,
container for 180 min at a rotational speed of 400 rpm,
with a mixture-to-grinding body mass ratio of 1:10.
The prepared charge was placed into a 310 mL plati-
num crucible and melted at 1850 K for 100 min in an
SVK-5163 resistance furnace (Russia) equipped with
chromite-lanthanum heaters and a 3 L chamber volu-
me. Granulation was performed by pouring the melt
from the crucible into cold water.

The frit was dispersed in a high-energy ball mill
“SamplePrep 8000 M-230” (Spex, USA) in a WC con-
tainer with a volume of 55 mL for 60 min at a recipro-
cating frequency of 1080 cycles/min with short lateral
movements, and a frit-to-grinding media mass ratio
of 1:5. The slurry composition was prepared by mix-
ing and wet milling the frit with kaolinite clay from
the Chasov-Yar deposit, and water in the same mill
for 90 min with a slurry-to-grinding media mass ratio
of 1:3. The slurry's readiness was monitored by sieving
it through a 63 pm mesh sieve with virtually no residue.

Austenitic stainless steel samples of grade
12Cr18Nil0Ti (wt. %: C~0.12; Cr~18; Ni~ 10;
Ti ~ 0.8; Fe — balance) were used as substrates, shaped
as U-shaped plates with dimensions of 30x30x0.8 mm
and side heights of 10 mm, as well as cylindrical samp-
les with a diameter of 50 mm and a height of 30 mm.
The sample surfaces were prepared using sandblas-
ting with electrocorundum particles sized 50—63 um
at a pressure of 5 atm, followed by ultrasonic clean-
ing in isopropyl alcohol. The slurry was applied
to the sample surfaces by spray coating using an air-
brush with a nozzle and needle diameter of 0.8 mm.
The coated layers were dried under ambient condi-
tions with warm air (323 K) from a heater for 30 min.
The firing process was conducted in a TK.4.1400.1F
furnace (LLC Termokeramika, Russia) at a temperature
of 1400 K for 3 min. The samples were then cooled in
air at room temperature.

To determine the density and thermal diffusivity
of the coating material, a compact sample with a dia-
meter of 12.37 mm and a thickness of 1.5 mm was
fabricated from the frit. The frit powder was loaded
into a graphite mold and consolidated using the spark
plasma sintering method on the Labox-650 system
(Sinter Land Inc., Japan). The process was carried out in
a vacuum at a residual pressure of 40—50 Pa, a heating
rate of 80 K/min, a temperature of 973 K, a pressure
of 50 MPa, and an isothermal holding time of 20 min.

The density (p) was determined by the hydrostatic
weighing method using GR-202 analytical scales (AND,
Japan) with an accuracy of 10 g. The thermal diffu-
sivity (o) was measured using the laser flash method
on the LFA447 NanoFlash device (Netzsch, Germany)
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in a high-purity argon atmosphere of grade 6.0. The spe-
cific heat capacity (Cp) was determined using a dif-
ferential scanning calorimeter DSC 204 F1 (Netzsch,
Germany) at a heating/cooling rate of 5 K/min within
the temperature range of 373-593 K under an argon
flow of the same grade. The obtained data were pro-
cessed using the Proteus Analysis 6 software (Netzsch,
Germany). Based on the results, the thermal conducti-
vity (L) was calculated using the formula

k=anp. (1)

Gas-dynamic tests of the samples were conducted
on an aerodynamic test stand equipped with an induc-
tion plasma torch, following the methodology described
in [16]. The samples were positioned coaxially
to the flow at a distance of 100 mm from the nozzle exit
to the front surface of the coating. To determine the test
parameters, a computational experiment was con-
ducted, with the mathematical formulation and results
provided in Section 2.3. In this study, the test conditions
included a stagnation temperature 7, ~ 6000+6500 K,
a Mach number M = 4.7, a speed of 3.54 km/s, and spe-
cific heat flux values ¢~ 15+30 W/cm?. The bright-
ness temperature (7,) of the sample front surface was
measured using the VS-CTT-285/E/P-2001 bright-
ness pyrometer (LLC Videoscan, Russia) at a wave-
length of 890 nm. Changes in the spectral emissivity
of the samples during testing were assessed by analy-
zing the ratio of radiation intensities at the brightness
and spectral temperatures, measured simultaneously
using the USB2000+ spectrometer (Ocean Optics,
USA) from the sample’s front surface. The thermo-
dynamic (true) temperature (7)) of the sample's front
surface was determined by recalculating the brightness
temperature measured by the pyrometer, accounting for
the established variation in emissivity at a wavelength
of 890 nm. The mass of the samples before and after
fire testing was measured using the same analytical
scales as in the hydrostatic weighing method.

The heterogeneous recombination rate constant
of atoms and ions (K ) on the active centers of the
coating surface was determined based on the diffe-
rence in the heat flux density between the reference
and the investigated compositions, tested under iden-
tical conditions. Using parametric numerical model-
ing of the flow and heat transfer around the samples,
the derivative dK /dT, [16] was calculated [16].
The value of K for the investigated coating was deter-
mined based on the known value of K _ for the refe-
rence sample, the magnitude of dK /dT, and the dif-
ference in brightness temperatures AT, of the thermally
insulated investigated and reference samples, accor-
ding to the following formula [16]:

K, =K, + k., AT, )
dT,

The product of K and the concentration of atoms
and ions n indicates the number of atoms and ions
recombining on a unit surface of the coating per
second. As reference samples, samples made of fibrous
thermal protection material quartz TZMK-25 with
a heat-resistant enamel coating EVCH-4M1U [17]
were used, for which K| = 0.1+0.3 m/s at temperatures
of 400-1550 K.

The chemical composition of the frit powder was
determined using X-ray fluorescence (XRF) analysis on
an ARL OPTIM’X wavelength spectrometer (Thermo
Fisher Scientific, Switzerland), which does not allow
for the identification of light elements such as boron,
carbon, and oxygen.

X-ray diffraction (XRD) patterns were recorded
using the Bragg—Brentano geometry on an ARL X’tra
diffractometer (Thermo Fisher Scientific, Switzerland)
equipped with a Peltier detector and a copper anode
CukK . The measurements were performed with a step
size of 0.02° at a goniometer radius of 520 mm,
at a scanning speed of 0.5 °/min, within the angular
range of 20 = 10+90°. For qualitative phase analysis,
the Crystallographica Search-Match software (Oxford
Cryosystems, UK) and the ICDD PDF-2 database
(2010) of standard X-ray patterns were used.

Microstructural studies were conducted using an
EVO-40 scanning electron microscope (SEM) (Carl
Zeiss, Germany), equipped withan X-Max 50 energy-dis-
persive X-ray spectrometer (EDS) (Oxford Instruments,
UK). Imaging was performed in both secondary and
backscattered electron modes. Quantitative information
on the local elemental composition of the phases was
obtained using EDS at an accelerating voltage of 15 kV
and a probe current of 0.5-1.5 nA. For the preparation
of metallographic sections, precision equipment from
Struers (Denmark) was used.

2. Results and discussion

2.1. Composition, structure,
and properties
of the glass-ceramic coating

The chemical composition of the melted frit,
expressed in terms of oxides (wt. %), is as follows):
BaO - 34.4; Si0, - 30.9; Cr,0; — 22.3; CaO - 3.5;
TiO,-2.1; CoO - 1.9; MnO - 1.9; A1,O, - 1.6; MoO, —
1.4. X-ray phase analysis revealed that Cr, O, is the only
crystalline phase in the frit, exhibiting rhombohedral
symmetry with unit cell parameters of a = 0.49553 nm
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and ¢=1.3581 nm. The absence of other crystalline
phases, particularly SiO,, suggests that the synthesized
barium silicate glass is in an X-ray amorphous state.
The composition of the resulting frit meets the concent-
ration limits specified in the invention [15].

Fig. 1 presents the microstructures of the cross-
section and surface of the glass-ceramic coating
on 12Cr18Nil0Ti steel, shown in reflected and secon-
dary electron images, characteristic X-ray radiation
of elements, and a multilayer composite image created
by combining electron micrographs and X-ray maps.
The coating exhibits a heterogeneous structure, con-
sisting of a barium silicate glass matrix with uniformly
distributed Cr,O, particles, with a size of no more than
10 um. The coating thickness is 50+5 um. The structure

i 8 i e [Ba] @[ S]] _Erccronic |

10 um
—

of the coating reveals the presence of sporadic pores
and gas bubbles (Fig. 1, a, b) ranging from 4-6 pm
in size (occasionally up to 10 um). Their formation
occurs during the firing process and is associated with
the encapsulation of gaseous reaction products within
the viscous glass phase.

According to SEM and EDS data, the formation
of the coating is accompanied by a decrease in Cr
content and an increase in Fe, Ni, and Ti concentra-
tions in the surface layers of the substrate to a depth
of 3—4 um (Table 1). The glass phase near the “sub-
strate—coating” interface contains an increased pro-
portion of Cr,0,, along with small amounts of iron
and nickel oxides. According to [4], the dissolution
of Cr,O; in the glass ceases once its content reaches

10 pm
—

Fig. 1. Microstructure of cross section (a, c—h) and surface (b) of glass-ceramic coating
in initial state on steel 12Cr18Nil0Ti: in reflected (a) and secondary (b) electrons; combined image (¢);
maps of element distribution in characteristic X-ray radiation: OK, (d); CrK,, (e); SiK,, (f); BaL, (g); FeK, (h)

Puc. 1. MUKpOCTpPYKTypa MOMEPEUHOro ceueHus (@, ¢—h) v TOBEpXHOCTH (b) CTEKIOKEPAMUIECCKOTO MTOKPBITHS
B HCXOIHOM cocTostHuH Ha ctany 12X18H10T: B oTpaxkeHHBIX (@) ¥ BTOPHYHBIX (b) 3JI€KTpOHAX;
KOMOMHHPOBaHHOE N300paXkeHHe (¢); KapThl pacipe/IeIeH s 2IEMEHTOB B XapaKTePHCTHIECKOM

penTreHosekoM usiydennn: OK, (d); CrK, (e); SiKal (N); BaL, (g); FeK,, (h)
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Table 1. Local chemical composition of areas on the cross section
of 12Cr18Nil0Ti specimen with glass-ceramic coating in the initial state

Tabamya 1. JlokanbHbIH XMMHUYecKHil cocTaB o0s1acTeil Ha MoNMepeYHOM ceyeHnU o0pa3ua
u3 12X18H10T co cTek/10kepaMu4eCKHM NOKPBLITHEM B HCXOHOM COCTOSIHUH

Spect- Element content
rum No. Analysis location . ] ]
in Fig. 1, ¢ % O | Ni | Fe | Cr | Si | Ba Mo | Ca| Co|Mn | Al | Ti
i 3=7wm from the coating | 1oy o183 03 - | - | - | - | - | = |02
interface
2 273 pm from the coating o -1 gg qag s - -~ — |~ | — | - |03
interface
3 At the coating interface wt. | — [10.0/77.5/104] 02 | — - - - - | 1206
4 Glass phase 2-3 um from | | 55 51 o4 | 38 | 50 |194|92 |02 15|07 |08 |14 —
the substrate
5 Glass phase 6-8 um from | 16y 01— | _ 1 47 194/ 93 03| 16| 04 | 09 | 14 | -
the substrate
6 Glass phase 6-8 um from | 16y 51 | 56 1190]92 03 17]07 09|12 -
the coating surface
at. |57.7| - - 191 |134|146| 26| 14 | — - 112 -
Outer coating layer at. | 584 | - - | 111138 |11.2| 1.7 | 1.3 | 06 | 0.8 | 1.1 | —
9 at. |57.1| — - |83 |165|125, 12|18 0608 |12 | —
10 Cr, O, particle in the glass at. 1619 — _ 378 03 | — B B B B B B
phase

approximately 2.5 wt. %. At a distance of 6-8 pm
from the substrate interface, the glass phase acquires
the characteristic chemical composition of the coating
(Table 1). The presented data indicate that the enamel
melt of the coating dissolves the primary scale that
forms on 12Cr18Nil0Ti steel during the initial stage
of firing. The formation of this scale occurs as oxy-
gen penetrates the substrate surface through through-
pores in the yet unmelted slurry layer. The dissolution
of scale in the glass enamel during firing, along with
the presence of adhesion-promoting oxides (CoO,
MnO, and MoO;), contributes to improved adhesion
between the coating and the substrate.

The coating surface is characterized by a glassy
luster and a dark green color. The outer coating layer,
approximately 3—5 um thick, contains numerous highly
dispersed crystals with a high content of Ba, Cr, and Mo
(Table 1), indicating surface crystallization of the glass
phase. This corresponds to the upward mass transfer
of Ba%', Cr**, and Mo®" cations towards the surface,
moving opposite to the concentration gradient. The crys-
tal sizes range from 1.5-2.0 to 3—4 um (Fig. 1, b).

According to X-ray diffraction analysis, the pri-
mary crystalline phase in the coating, as in the frit, is
Cr,0; with a rhombohedral crystal system. In addi-
tion, the presence of the BaSi,O, phase with a trigonal
structure and unit cell parameters of ¢ = 1.1338 nm and
¢ =0.4548 nm was identified. The observed increase

in these parameters compared to the reference values
(a=1.12469 nm and ¢ = 0.44851 nm [18]) is likely due
to the doping of the lattice with chromium and molyb-
denum cations, which is consistent with EDS data.
Notably, the BaSi,O, phase is known only as a high-
pressure polymorph [18], and its formation through
surface crystallization of the glass phase requires
further investigation. The absence of other crystalline
phases indirectly suggests that the matrix phase based
on barium silicate glass remains in an X-ray amorphous
structure.

The average density of the coating, deter-
mined by the hydrostatic weighing method, was
p=3.813 g/cm?®. Fig.2 presents the thermophysical
properties of the coating within the temperature range
of 373-593 K. As the temperature increases, the heat
capacity increases in a non-linear manner, while
the thermal diffusivity decreases linearly. The latter
behavior is typical for glass-ceramics and is attributed
to increased phonon scattering with rising temperature.
The coating exhibits relatively low heat capacity, with
C,=0.68+0.75 J/(g'K) within the temperature range
of 373+593 K. The thermal diffusivity of the coating
decreases linearly from 0.47 to 0.43 mm?/s in the range
0f293-573 K. Dataapproximation was performed using
regression analysis in Microsoft Excel. The approxi-
mation results and their reliability (coefficient of deter-
mination R?) are shown in Fig. 2. The thermal con-
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Fig. 2. Temperature dependencies of heat capacity (C/ ;) and thermal diffusivity (o)) of glass-ceramic coating

Puc. 2. TemneparypHbIe 3aBUCHMOCTH TEIUIOEMKOCTH (Cp) U TEMIIEPATYPOIPOBOAHOCTH (0) CTEKJIOKEPAMHUYECKOTO TOKPHITHS

ductivity of the coating, calculated using equation (1),
shows minimal variation within the temperature range
0f293-573 K and is A = 1.21£0.012 W/(m-K).

2.2. Results of gas-dynamic testing
of the glass-ceramic coating

Samples made of 12Cr18Nil10Ti steel in the form
of U-shaped plates with a glass-ceramic coating
were sequentially installed into a cylindrical holder
with a diameter of 50 mm, made of TZMK-25,
flush with its end surface. A non-fired coating
of the Si-TiSi,~MoSi,~TiB,-SiO, system [19] was
applied to the holder's end surface to enhance its ero-

2500
2250
2000
1750
1500
1250
1000

750

500

250

T, T,,K; W,-10, kW;
P, 10", Pa

0

. Nozzle

8

Model
(sample in holder)

sive resistance and increase its emissivity. The tests
were carried out under stepwise gas-dynamic heating
conditions using an air plasma flow, with the front
surface temperature ranging from 7, = 1193+1593 K.
Typical fire test results are shown in Fig. 3, a as profiles
of the brightness temperature (7,) and thermodynamic
temperature (7)) at the critical point of the front sur-
face (curves / and 2), the preheater chamber pressure
(P,, curve 3) and the anode power input (W, curve 4).
Fig. 3,5 and c¢ display photographs of the sample
during testing and the coating's front surface after
testing, respectively. The test series included five
samples, and each fire test lasted 1000 s. The results
exhibited good reproducibility, indicating the consis-

TZMK-25 ilolder with
Si=TiSi,~MoSi,-TiB,-SiO,
P\coating

b c

Fig. 3. Results of gas-dynamic tests of a specimen made of 12Cr18Ni10Ti steel with glass-ceramic coating (@), photo of the model
during the test (b) and appearance of the specimen face in a holder made of TZMK-25 after its completion (c)

1 and 2 - brightness (7)) and thermodynamic (7, ) temperature at the critical point of the coating face;
3 — pressure in the heater prechamber (P); 4 — anode input power (/)

Puc. 3. Pe3ynbrarhl ra30inHaMHYECKUX HCIBITaHUi 00pa3ia u3 cramu 12X18H10T
CO CTEKJIOKEpaMHUYECKUM MOKPBITHEM (@), poTorpadust Mmoaenu B mpouecce ucnbiranus (b)
1 BHEIIHUI BUJ JTULIEBOM CTOPOHBI 0Opasua B nepxxaske n3 T3MK-25 nocie ero okoHuanus (¢)

1 n 2 - sapkocrras (T,) u TepmoguHamuyeckas (7)) TeMreparypbl B KPUTHYECKOH TOUKE JIMIEBON IIOBEPXHOCTHU TIOKPBITHSL;
3 — naenenue B popkamepe nogorpesarens (P); 4 — MomHocTs MuTanus anona (W,)
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tency of the physico-chemical processes occurring in
the coating during its interaction with the air plasma, as
well as the low magnitude of random errors. The aver-
age specific mass loss and erosion rate of the coating
during the tests were determined to be 7.2 mg/cm? and
25.9 mg/(cm?-h), respectively. Throughout the fire tests,
the spectral emissivity of the coating at a wavelength
of 890 nm remained nearly constant at € = 0.85+0.02.
The high degree of blackness of the coating is mainly
attributed to the presence of numerous Cr,O, particles
within the structure, which exhibit a high emissivity
(e = 0.9). Additionally, surface crystallization contrib-
utes to enhanced radiation effects at interfacial irregu-
larities. The stability of the emissivity value through-

FeO-(CrFe),0,

10 .pn'l-';
—

out the test confirms the high thermochemical stability
of the coating.

Fig. 4 presents the microstructures of the cross-
section and surface of the glass-ceramic coating on
12Cr18Nil10Ti steel after the fire test, shown as secon-
dary electron images, characteristic X-ray radiation
element maps, and a multilayer composite image.

The coating surface retained its gloss and dark
green color. The structure of the outer layer con-
sists of BaSi,O, phase crystals, whose size increased
to 1015 um (Fig. 4, b) compared to the initial state
(Fig. 1, b). Their growth is likely due to recrystalliza-
tion via the Ostwald mechanism.

+3 + 4

10 wm
—

10 pm
—

Fig. 4. Microstructure of cross section (a, c—h) and surface (b) of glass-ceramic coating on 12Cr18Ni10Ti steel after fire tests:
in secondary electrons (a, b); combined image (¢); maps of element distribution in characteristic X-ray radiation:
OK,, (d); CrK,, (e); SiK,, (f); BaL, (g); FeK,, (h)

Puc. 4. MUKpOCTpYKTypa MOMEPEUHOr0 ceueHUs (@, c—h) 1 MOBEPXHOCTH (b) CTEKIOKEPaMHUECKOTO TTOKPBITHS
Ha ctami 12X18H10T mociie OrHeBOro SKCIEPUMEHTA: BO BTOPHYHBIX 3JICKTPOHAX (a, b); KoMOMHMPOBaHHOE N300paxeHue (¢);
KapThbl pacrpeiesieHUs HJIEMEHTOB B XapaKTEPUCTUUECKOM PEHTICHOBCKOM M3JIy4YEHUU:
OK,, (d); CtK,, (e); SiK,, (f); BaL, (g); FeK, (h)

47



DM v on

W3BECTUA BY30B

W3BECTUA BY30OB. [TOPOLIKOBAA METANNYPTUA U GYHKLLIMOHANBHBIE MOKPbITUA. 2025;19(1):40-57
Acmanos A.H., }{ecmkoe b.E., Pmuwesa A.C. ViccneaoBaHue XapaKTePUCTUK KapOCTOMKOIO CTEKNOKEPAMMYECKOTO ...

The coating exhibits a heterogeneous, low-porosity
structure, comprising a glass phase, Cr,0, and BaSi,0,
particles, as well as spinel particles of complex com-
position (Fe,Co,Ni,Mn)O-(Cr,Fe,Mn,Co),0,, which
are located within a zone extending up to 10-15 pm
from the substrate interface (Fig. 4, ¢). The iron oxide
content in the glass gradually decreases with distance
from the substrate (Table 2). At the substrate-coating
interface, an interface layer with a thickness of appro-
ximately 1.5-2.5 um is formed, based on iron chro-
mite FeO-(Cr,Fe),0, (Fig. 4, ¢, Table 2). In the sur-
face layers of the substrate, up to a depth of 5-6 pm,
a significant decrease in Cr content is observed,
accompanied by an increase in Ni and Fe concentra-
tions. In the FeO-(Cr,Fe),0, phase, iron is present in
excess, allowing for its unrestricted diffusion through
the sublayer, as evidenced by the presence of iron in
the glass phase. Nevertheless, the sublayer acts as
a diffusion barrier, reducing the intensity of compo-
nent mass transfer. The oxidation of the substrate’s
surface layer and the cations diffusing from the alloy
into the coating primarily occurs due to the transport
of oxidizing agents through discontinuities and defects

in the coating, along the interfaces of the glassy matrix
and the mentioned particles. The presence of variable-
valence cations (Fe, Co, Mn, Mo) in the coating pro-
motes oxygen absorption from the gas flow.

According to X-ray diffraction analysis, the main
crystalline phases in the coating after testing, as in
the initial state, are Cr,0O, with a rhombohedral crys-
tal system and BaSi,O, with a trigonal structure.
Additionally, a small amount of Fe,O, (magnetite) phase
in an orthorhombic modification with unit cell parame-
ters a = 0.5912 nm, b = 0.5945 nm, and ¢ = 0.8388 nm
was detected, which correlates well with the SEM
and EDS results. The narrowing and increased inten-
sity of diffraction reflections from the BaSi,O, phase
indicate the gradual progression of crystallization into
the coating depth. The absence of other crystalline
phases indirectly suggests that the barium silicate glass
matrix phase retains its X-ray amorphous state.

Based on the results of the conducted tests and
the presented research data, it can be concluded that
the protective properties of the coating remain intact.
The glass phase effectively shields the substrate from

Table 2. Local chemical composition of areas on the cross section
of 12Cr18Nil10Ti sample with glass-ceramic coating specimen after the fire experiment

Ta6bnuya 2. JlokaJabHbI XUMHYECKHIi COCTAaB 00/1acTell HA MONEPEYHOM ce4eHHH 00pa3na
u3 12X18H10T co cTek/iokepaMHYecKHM MOKPbLITHEM TOCJI€ OTHEBOT0 IKCIePUMEHTA

Spect- Element content
rum No. Analysis location . . . ]
in Fig. 4, ¢ % O | Ni | Fe | Cr | Si | Ba | Mo| Ca | Co | Mn | Al | Ti
I 79 pm from the coating | 1oy 1907 178 04 | — | - | - | - | - | - | -
interface
2 3-5 um from the coating 1 -y 956130 02| - | - | - | - | = | | -
interface
3 172 pm from the coating | o 1 ygn g3 77 |~ | - | - | o | o | o o] -
interface
4 At the coating interface wt. | 50 | 182|654 11.0| - - - - - - - 103
Intermediate layer based
5 on FeO-(Cr.Fe),0, spinel at. |56.7| — |14.1/243|29|10| - | 0.1 | — - 10206
Spinel (Fe,Co,Ni,Mn)Ox
6 *(Cr,Fe,Mn,Co),0, in the glass | at. |56.5| 1.0 | 7.6 |17.5| 6.0 | 2.6 | — | 04 |49 |31 |05 | —
phase
7 Cr,0, particle in the glass at 15911 _ ~ 1401l 05 - B 3 B o2l =
phase
Glass phase at a distance
8 of 3-4 um from the substrate at. [602| — | 67 |44 1757402 | 11|05 |04 1.0] 0.6
Glass phase at a distance
9 of 7-8 um from the substrate at. [59.11 03|52 |30(195|83|02|13|07/]09)|14]| -
Glass phase at a distance
10 of 18-20 um from the substrate at. 599 — | 45|28 (20586 |02 |13 | - [07|15]| -
Glass phase at a distance
11 of 30-32 um from the substrate at. |[63.1| — | 3005120683 |03 |13|03]07]|19]| —
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high-temperature oxidation and facilitates self-healing
of defects. The presence of refractory Cr,O, particles
(melting point 7 = 2708 K), together with the surface
crystallization of the glass phase, enhances the coa-
ting's resistance to erosion in high-speed gas flows and
improves its emissivity.

To evaluate the thermal conductivity and catalytic
activity of the coating, an additional gas-dynamic
experiment was conducted using a cylindrical sam-
ple made of 12Cr18NilOTi steel, with a diameter
of 50 mm and a height of 30 mm, serving as a calorim-
eter. A coating with a thickness of 120+5 was applied
to the end surface of the sample. Three chromel-alumel
(type K) thermocouples (TCs) were welded to the side
surface of the cylinder at distances of 0.2 mm (TC1),
5.0 mm (TC2), and 14.5 mm (TC3) from the coated end.
The sample was placed in a graphite holder with a dia-
meter of 70 mm and a height of 102.5 mm, flush with its
end surface, and insulated from it using a spacer made
of the thermal protection material quartz TZMK-25,
with a diameter of 60 mm and a height of 40 mm. A non-
fired coating of the Si-TiSi,~MoSi,~TiB,-SiO, sys-
tem [19] was applied to the holder’s surface to enhance
its oxidation resistance.

The typical fire test conditions for the calorimeter
cylinder are presented in Fig. 5 as profiles of bright-
ness temperature (7, ) and thermodynamic temperature
(T,) at the critical point of the front surface (curves /
and 2), preheater chamber pressure (P, curve 3),
anode power input (W, curve 4), and thermocouple
readings (TC1, TC2, and TC3; curves 5—7). The figure
also includes a photograph of the sample after 7 test

1400

cycles conducted under this mode, with a total dura-
tion of 25 min. The average values of the specific mass
loss and erosion rate of the coating after 7 test cycles
were determined to be 2.8 mg/cm? and 6.7 mg/(cm?-h),
respectively. The coating retained its performance
characteristics.

The thermal conductivity of the coating was deter-
mined based on the heat flux through it and the tempe-
rature gradient. The thermodynamic surface temperature
of the coating was obtained by recalculating the bright-
ness temperature measured by a pyrometer, taking
into account the established emissivity of &= 0.85
at a wavelength of 890 nm. The temperature beneath
the coating was determined from the TC1 thermo-
couple readings, with a correction applied based on its
placement. The heat flux through the coating was cal-
culated from the heating rate of the sample. As shown
in Fig. 5, the coating demonstrates exceptionally low
thermal conductivity under these conditions. The sur-
face temperature of the coating, 7 ~ 1054+10K,
is reached within the first At, ~25s from the start
of the experiment and remains more than 375 K higher
than the substrate temperature even after At, ~ 185 s
of heating. This corresponds to a thermal conducti-
vity value of A =0.04+0.01 W/(m-K) at a temperature
of T\ ~ 1054 K and a pressure of P = 214.8 Pa, which
is 30.25 times lower than the value measured at tem-
peratures of 293-573 K and pressure P = 10° Pa (see
Section 2.1). The results demonstrated high reprodu-
cibility in subsequent test cycles under identical con-
ditions. To determine the operating parameters and
confirm the observed reduction in thermal conducti-

T
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1200

T
~

1000
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P, 10, Pa
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400

T,, T, K; W, 10, kW

200

80 100 120

T,8

140

160 180 200 220

Fig. 5. Results of gas-dynamic tests of calorimeter sample made of 12Cr18Nil0Ti steel
with glass-ceramic coating and its appearance after 7 test cycles

1 and 2 - brightness (7}) and thermodynamic (7, ) temperature at the critical point of the coating surface;
3 — pressure in the heater prechamber (P); 4 — anode input power (W, ); 5-7 — thermocouples readings TC1, TC2 and TC3

Puc. 5. Pe3ynbrarsl ra30JiHaAMHYECKHX UCTIBITAHUI 00pa3ua-kamopumerpa u3 cranu 12X18H10T co creknokepamudeckum
TOKPBITHEM U €r0 BHEHIHUN BUJ 11OCIIE 7 HUKIIOB UCIBITAHUHI

1 12— spxoctHas (T, ) u repmoauHamuueckas (7 ) TeMIeparypbl B KpUTHYCCKOM TOUYKE JIUIECBOM MOBEPXHOCTH ITOKPBITHUS;
b w
3 — naBnenue B opkamepe noporpesareis (P, ); 4 — MomHocTh nuTanus anonaa (W); 5—7 — nokasanus tepmonap TII1, TTI12 u TII3
0 a
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vity, a computational simulation was performed (see
Section 2.3), with further analysis of the observed
effect provided in Section 2.4.

A significant contribution to the heat flux under
non-equilibrium exposure to air plasma may be due
to the heterogeneous recombination of atoms and ions
in the flow. Therefore, catalytic activity is an important
property of high-temperature materials and coatings.
To assess the catalytic activity of the glass-ceramic
coating, a TZMK-25 cylinder with the reference heat-
resistant coating EVCh-4M1U was installed alongside
the steel calorimeter cylinder in the thermal conducti-
vity measurement setup. Under identical gas-dynamic
conditions, the average brightness temperature
of the reference coating was 1227 K, while the effec-
tive brightness temperature of the tested coating, cal-
culated based on the total heat flux to the steel cylinder,
was 1365 K. The heterogeneous recombination rate
constant of the glass-ceramic coating, calculated using
equation (2), was determined to be K = 14+3 m/s.
This categorizes the tested coating as moderately
catalytic, in contrast to highly catalytic coatings and
oxide films in the HfB,-SiC-HfO,-Zr0O,-Y,0, system
(K, =23 m/s[20]), ZrO,~Y,0, (K =33 m/s [16]), and
HfO, (K, = 32.5 m/s [16]). The relatively high K| value
of the tested coating compared to the reference coa-
ting (K = 0.1+0.3 m/s) is attributed to the significant
heterogeneity of its structure, characterized by the pre-
sence of numerous primary (Cr,0,) and secondary
(BaSi,0,) phase particles (see Section 2.1). This struc-
tural heterogeneity increases the number of active sites
on the coating surface, where recombination of atoms
and ions from the plasma flow occurs.

2.3. Numerical simulation
of flow around and unsteady heating
of the cylinder

To refine the conditions of the fire test, numerical
simulation of the flow around and heat transfer of the cal-
orimeter cylinder in the working section of the setup was
carried out, taking into account the reaction kinetics
of dissociation and exchange processes in an §-compo-
nent mixture: O,, N,, O, N, NO, O", NO", e". The gas
mixture flow was modeled based on the Navier—Stokes
equations, which describe the conservation laws of mass,
momentum, and energy. It was assumed that the heat
flux vector q includes three components: the conductive
component, governed by Fourier's law, the convective
component, caused by shear stress forces, the diffusive
component, described as follows:

K
q=-AVT +1V+) hl, 3)

i=1
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where A is the thermal conductivity coefficient; T is
the viscous stress tensor; V is gas velocity vector; 4, is
the specific enthalpy of the i-th component, and I, is
the diffusion flux vector of the i-th component.

The diffusion vector was determined using Fick's
law:

I, =-pD,Vg,, 4)

where D, is the diffusion coefficient of the i-th compo-
nent, and g, is the mass fraction of the i-th component
in the mixture.

The continuity equation for the i-th component
in the mixture, accounting for mass sources and diffu-
sion, is written as follows:

op; . .
%—I—dlv(in) =—div(p,1,) + o, (%)
Here, o, represents the mass formation rate of the com-

ponent per unit volume due to chemical reactions:

o, = Mlz (V:;_V;s){kﬁn(%j _krsl_[(%j :l’ (6)

i i

”

where v}, v. are the stoichiometric coefficients

of the reactants and products in the s-th chemical
reaction.

The reaction rate constants were determined using
the Arrhenius equation [21], considering the kinetic
scheme presented in Table 3:

B r C r
kg = Ay T exp(_%j, (7)

where the subscripts fand » correspond to the forward
and reverse reactions, respectively.

The system of equations was closed using the equa-
tion of state for the gas mixture:

X -1
p=PRT. :( &J. )

The specific static enthalpy of the component is
given by:

%+h0i, i=N,0,0% ¢

h=1 kT ©)
——+e, +hy, i=N,, 0,, NO, NO".
2M.

1

Here, h,, is the specific enthalpy of formation of the i-th
component, and e, is the energy associated with
the vibrational degree of freedom:
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Table 3. Kinetic model for an eight-component gas mixture

Ta6nmya 3. Kuneruueckast MojeJib 1Jisi BOCbMHKOMIIOHEHTHOM ra30Boii cMecH

No. Chemical reaction equation (cm? /rf{(;l)"*‘ /s B 2 C/., K (cm® /rfl:),l)”'*‘ /s B, C.K
: N, * N N+N+N 3.00-10% 1.60 | 113200 4.351-10" 1.24 0
2 N,+0 - N+N+0 ' o ' o
3 N,+N, o N+N+N,

4 N,+0, = N+N+O, 7.00-10%! —1.60 | 113200 1.015-10" -1.24 0
5 N, +NO < N+N+NO
6 N,+e o N+N+e 1.20-10% —1.60 | 113200 1.740-10% —1.24 0
7 0,+N-O0+0+N

1.00-10% —1.50 | 59750 5.856-10"° -1.19 0
8 0,+0-0+0+0
9 0,+N, > 0+0+N,

10 0,+0,<-0+0+0, 2.00-10%! —1.50 | 59750 1.171-10" -1.19 0
11 0,+NO -~ O+0+NO
12 NO+Ne&N+O+N
13 NO+O - N+0O+0 1.10-10"7 0 75 500 2.485-101% 0.27 0
14 NO +NO < N+ O+ NO
15 NO+N, > N+0+N,

5.00-10% 0 75 500 1.129-10' 0.27 0
16 | NO+0,-N+0+0,

17 NO+O < N+O, 2.80-10° 1.00 20 000 1.100-10'° 1.00 | 4000
18 N,+0O < NO+N 2.00-10" 0.50 38 000 4.400-10" 0.50 0
19 N+O & NO +e 2.56-10" 0 32200 6.700-10%! —-1.50 0
20 NO"+N <« O"+N, 3.40-10" -1.08 | 12 800 1.028-1013 —0.88 0
21 O+te 0" +e te 3.90-10% -3.78 | 158 500 3.686-10% -5.89 0
22 NO+e < NO"+e +e 6.50-10% -1.68 | 107 370 4.384-10% —4.11 0
23 NO"+0 < NO + 0O 1.82-10" 0 50 130 1.967-10" 0.12 0

RO, (10) The study of the external flow around the cylinder

eiv: @ H
M. | exp| — | -1
[oo( )

where @, is the characteristic vibrational temperature
of the i-th component molecule.

When calculating the thermodynamic proper-
ties of the gas mixture, it was assumed that for each
chemical component, thermodynamic equilibrium
exists between translational, rotational, and vibrational
degrees of freedom of the molecules. The primary tem-
perature dependencies of the gas-dynamic and thermo-
physical parameters for each component were taken
from references [21; 22].

It is worth noting that to reduce computational time
and resource consumption, a decoupled approach was
used instead of a fully coupled solution for the external
flow around and unsteady heating of the solid structure.
The effectiveness of this approach has been confirmed
in [23].

with a glass-ceramic coating was carried out using
a computational grid of the working section, consisting
of approximately 0.3 million cells. Mesh refinement
was applied in the near-wall regions and near the outer
boundary of the shock layer. A two-dimensional axi-
symmetric laminar flow of the gas mixture was simu-
lated. At the inlet of the computational domain, the total
pressure was set to P, =4667.7 Pa. The temperature
was selected to match the test conditions, ensuring that
the average total temperature in the preheater chamber
fell within the range of 7, ~ 6000+6500 K. In the initial
approximation, the mass fractions of oxygen and nitro-
gen were set as follows: g(0,) =0.23, g(N,) =0.77.
In subsequent calculations, the mass fractions
of the components were refined for greater accuracy.

The boundary conditions at the outlet of the compu-
tational domain (outlet pressure P_ ) were set to estab-
lish a steady-state flow regime. Radiative heat trans-
fer was applied as a boundary condition on the model
surface, with the surface emissivity assumed to be
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€=0.85, and the external radiation temperature set
equal to the wall temperature of the working sec-
tion, 7 = 300 K. The front surface of the model with
the glass-ceramic coating was considered catalytic.

The primary calculations were conducted using
the ANSYS Fluent software package (TsAGI license
No. 501024), in which the described 8-component
gas mixture model was implemented. The results
of the flow simulation around the cylinder in the work-
ing section are shown in Fig. 6. The Mach number ahead
of the shock wave reaches M =4.7, and the plasma
speed is 3.54 km/s. A curved shock wave forms at
a distance of Ax~ 17 mm from the front surface
of'the cylinder, followed by a transition to subsonic flow,
with a specific heat ratio y = CP/CV =1.29. The mass
fractions of the main components in the incoming
flow (at the nozzle exit) are as follows: g(O,) = 0.026;

g(N,) =0.727; g(0) = 0.135; g(N) = 0.023; g(NO) = 0.028;

300 831

g(NO™) =0.061;g(0") = 0.325:103;g(e") = 1.767-107"7.
In front of the model, the gas temperature reaches
T=5613.2 K, and the pressure is P =214.8 Pa.

The unsteady heating analysis of the cylinder with
a glass-ceramic coating was conducted on a compu-
tational grid comprising ~0.9 million cells, with
~0.04 million cells assigned to the coating layer with
a thickness of 125 pm.

For the calculation of convective heat transfer
to the model surface, a heat transfer coefficient profile
was applied:

q
o=—2"—) 11
— (11)

wmax

where ¢ and 7, represent the heat flux density and
the surface temperature, respectively, obtained from
the external flow simulation. 7, is the temperature

at the outer boundary of the boundary layer (considered

1363 1894 2425 2957 3488 4019 4554 5082 5613 0 21 43 64 86 107 129 150 172 193 215

i

0 047 094 1.41

1.88 235 282 329 376 4.23 4.70

i

0 0.02 004 006 0.08 o0.11

0.13 0.15 0.17 0.19 0.21

c

d

Fig. 6. Main results of the cylinder’s external flow calculation

a — static temperature field (7, K); b — static pressure field (P, Pa);
¢ — Mach number value field (M); d — mass fraction value field O

Puc. 6. OcHOBHBIE pe3yibTaThl pacuyeTa BHEIIHETo 00TEKaHuUs! LIHIIHHIPA

a — mone craruaeckoii Temneparypsl (7, K); b — mone craruueckoro gasnenus (P, I1a);
¢ — noiie 3HaueHNH ynciaa Maxa (M); d — moine 3HaueHU MaccoBoit o O
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equal to the adiabatic wall temperature and determined
through an additional calculation assuming ¢, =0
on the model surface). The radiative heat transfer cal-
culation was performed using the same conditions as
in the external flow around simulation. The initial tem-
perature of the entire solid structure (the cylinder with
coating and thermal insulation of the lateral surfaces)
was set to 7, = 291.7 K.

The thermophysical properties of the cylinder mate-
rial (12Cr18Nil0Ti steel) were taken from reference
data [24]. For the glass-ceramic coating, the experimen-
tally obtained density value p =3.813 g/cm® and spe-
cific heat capacity as a function C,=0.20957°2% (see
Section 2.1) were used. The dependence of the thermal
conductivity coefficient on the average temperature across
the coating section was adjusted to match the experimen-
tally obtained surface temperature profile and the slope
of the temperature curves, which indicate the rate
of temperature change at the thermocouple installation
points: AT/At ~1.2+1.4 K/s (see Fig.5). Additionally,
surface temperature calculations were conducted for
various values of the thermal conductivity coefficient,
including A = 1.21 W/(m-K), obtained in Section 2.1 for
T=293+573 K at a pressure of P = 10° Pa.

The key results of the unsteady heating simulation
of the coated cylinder are presented in Figs. 7 and 8.
During the test (see Fig. 5), it was found that the sur-
face temperature of the cylinder at the front critical
point initially rose sharply to 7 =1063.5 K, which
is typical for thermal insulation materials, and then
gradually decreased to 7 = 1044.6 K over At~ 185 s.
Based on a series of simulations, the test-obtained sur-
face temperature dependence at the critical point was
reproduced (Fig. 7, a) by adjusting the thermal con-
ductivity coefficient as a function of the average coa-
ting temperature across its thickness. It was shown that
during the test, the surface temperature at the critical
point slightly decreases, while the average temperature
across the coating thickness increases to 7= 840 K
(Fig. 7, b). Meanwhile, the thermal conductivity coef-
ficient increases from A ~ 0.03 W/(m-K) at 7= 690 K
to A~0.057W/(m-K) at T7T=840K (Fig.7,c).
The approximation of the computational data allowed
for the establishment of the relationship A = f(T), pre-
sented in Fig. 7, c. The increase in thermal conductivity
with temperature enables obtaining a monotonically
decreasing dependence 7 = f(t) (Fig. 7, a). The cal-
culated temperatures at the thermocouple installation
points agree within 5 % with the test results (Fig. 8, a).
The calculated values of the heat flux density at the front
critical point were ¢, = 18.2+18.5 W/cm?, which falls
within 2 % of the test-measured values.

Fig. 9 presents a comparison of test and calcu-
lated results for the evolution of surface temperature

at the critical point of the coating for different values
of the thermal conductivity coefficient. In each cal-
culation, the thermal conductivity coefficient was
assumed to be constant. The simulation results were
found to be in good agreement with the test data.
It was demonstrated that at A = 1.21 W/(m-K), the sur-
face temperature at the front critical point increased
only to 7 ~ 730K during the test, which does not
align with the test results. Moreover, the rate of tem-
perature change at the thermocouple installation points
exceeded the test values by approximately 1.4 times
(Fig. 8, b).

1070
1060--F"~-~.....,,_._'m_'.m_~
1050 |
1040 |
1030 -
1020 o
1010 |

1000 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180

T‘w > K

@ Test
== Calculation (A = 0.030+0.054 W/(m-K))

a

850
830 -
810 -
790 -
770 -
750
730 E_id’
710 - b

690 n 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200

Tcoat’ K

1,8

0.060 —
A=0.7-10 "T" ~0.00097+ 0.3197
0.055 ’
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0.045
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0.035

c

0.030 | ] 1 1 1 1 1 1
690 710 730 750 770 790 810 830 850
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Fig. 7. Results of surface temperature evolution calculation 7, ()
and thickness-averaged temperature of the coating 7, (b)
at the critical point during time; calculated coating’s thermal
conductivity dependence A = f,(T) at pressure P ~ 200 Pa (c)

Puc. 7. Pe3ynsrarsl paciera 3BOIIOLUH TEMIIEPATYPbI
nosepxHocTy 7, (@) ¥ cpeNHEH MO TONIIMHE TEMIEPATYPhI
nokpeitist 7 (b) B KpUTHYECKOH TOYKE BO BPEMEHH;
pacyeTHast 3aBUCHMOCTb TEILIONPOBOAHOCTH MOKPBITHS

A= f,(T) npu nasnenun P ~ 200 Ila (c)
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Fig. 8. Comparison of experimental and calculated results of temperature evolution at the thermocouple installation points
at different values of the coating’s thermal conductivity coefficient: A = f,(T) (@) and A = 1.21 W/(m-K) (b)

1-3 — calculation; 1'-3"— experiment
1,1'-TC1; 2,2'-TC2; 3,3'-TC3

Puc. 8. CpaBHeHHE SKCIIEPUMEHTAIIBHBIX M PACUCTHBIX PE3YJIBTATOB BOJIOLMH TEMIICPATYPhI B TOYKAX YCTAHOBKH TEPMOIIAP
TIPH Pa3IMYHBIX 3HAYCHUAX Kod(duimenta temionposoaHoctu nokpbitus: A = f,(7) (a) u A = 1,21 Br/(m°K) (b)

1-3 — pacyer; 1'-3' — SKCTIEPUMEHT
1,1'-TIIl; 2,2'—-TII2; 3, 3'— TII3

Thus, numerical simulation of the gas-dynamic test
confirmed that at low pressures (P ~ 200 Pa), a signifi-
cant reduction in the thermal conductivity of the glass-
ceramic coating occurs. The obtained thermal con-
ductivity values of A =0.030+0.057 W/(m-K) were
observed within the temperature range 7' = 690+840 K
and the average value of thermal conductivity coef-
ficient, determined during the test At~ 185s, was
A ~0.04 W/(m-K), which is in full agreement with
the test-derived value (see Section 2.2).

1200

2.4. Effect of reduced
thermal conductivity
with decreasing pressure

The thermal conductivity of the glass-ceramic
coating is primarily determined by atomic thermal
vibrations, known as the phonon transport mecha-
nism. A decrease in thermal conductivity occurs as
the phonon mean free path is reduced due to phonon
scattering at structural defects, such as impurity atoms,

1100
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M 700
&~ 600
500
400
300

20 40 60 80

100 120 140 160 180

T,8

Fig. 9. Calculated and experimental cylinder-calorimeter surface temperatures evolution results comparison
at different values of the thermal conductivity coefficient of the glass-ceramic coating

1-9 — calculation; 10 — experiment
A, W/(m-K): 0.03 (1); 0.04 (2); 0.05 (3); 0.06 (4); 0.08 (5); 0.10 (6); 0.20 (7); 0.50 (8); 1.21 (9)

Puc. 9. CpaBHeHHE PACUCTHBIX U AKCIICPUMEHTAIBHBIX PE3YJIbTATOB BOJIOLMHI TEMIICPATyPbl TOBEPXHOCTH LIMIHHIPA-KAIOPUMETpPa
TIPU PA3IMIHBIX 3HAYCHUAX KOI(PPUIHEHTA TETIIONPOBOIHOCTH CTEKIOKEPAMUIECKOTO MOKPBITHS

1-9 — pacuer; 10 — 3KCIEpUMEHT
A, Br/(M-K): 0,03 (1); 0,04 (2); 0,05 (3); 0,06 (4); 0,08 (5); 0,10 (6); 0,20 (7); 0,50 (8); 1,21 (9)
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grain boundaries, phase interfaces, and voids, as well
as interactions with other phonons. As temperature
increases, phonon-phonon interactions intensify, and
in combination with the highly disordered (amorphous)
structure of the glass phase, this results in extremely
short phonon mean free paths. When external pres-
sure decreases, the phonon mean free path is further
shortened due to the reduced propagation velocity
of acoustic waves resulting from the lower density
of the medium.

In the presence of structural inhomogeneities, such
as pores, voids, and cracks, the thermal conductivity
of dielectrics is influenced not only by the phonon
mechanism but also by convective gas transport
within these discontinuities. The extent of convec-
tion is strongly dependent on the distribution and
geometry of the discontinuities, as well as the ther-
mal conductivity of the enclosed gas. The convective
effect diminishes with decreasing discontinuity size,
reduced interconnectivity, and lower surrounding gas
pressure.

The investigated coating contains voids with sizes
up to ~5—10 pm (see Fig. 1). It is known [25] that at low
pressures (P < 10 Pa), when the mean free path of gas
particles / is much greater than the void size L (/> L),
the thermal conductivity of porous materials is propor-
tional to the gas pressure, increases with rising tem-
perature, and approaches zero as pressure decreases.
This phenomenon is likely due to the fact that when
/> L, gas particles remain adsorbed on the surface
of the voids for a long period before experiencing col-
lisions. As pressure decreases, the number of gas par-
ticles in the voids is reduced, and an increasing fraction
of them becomes adsorbed on the void surfaces, lea-
ding to a decrease in the convective component of heat
transfer. At temperatures above 1200 K, radiative heat
transfer in discontinuities should also be considered,
as its contribution to overall thermal conductivity
increases with temperature. It should be noted that in
the fire tests conducted to determine the thermal con-
ductivity of the glass-ceramic coating, the pressure
at the sample surface was P ~ 200 Pa, and the tem-
perature 7 ~ 1050 K, satisfying the condition /> L.
This, combined with the reduced phonon mean free
path, explains the extremely low thermal conductivity
of the coating.

A threefold reduction in thermal conductivity
(from 0.05t0 0.0167 W/(m-K) at 293 K) with a decrease
in external pressure (from 10° to 133.3 Pa) was pre-
viously observed during tests of the highly porous
quartz thermal protection material TZMK-10 [26].
The explanation of this observed effect is presented
here for the first time.

The conducted studies of the glass-ceramic coa-
ting have enabled its application in thermal testing
of various steel models in the TsAGI aerodynamic wind
tunnels [27]. The high and stable emissivity of the coa-
ting over time enhances the accuracy of temperature
measurements of models using optical methods under
illumination conditions. The coating’s heat and ero-
sion resistance slow down oxidation processes, reduce
mechanical erosion, and prevent the formation of cor-
rosion-erosion pitting and cavities on model surfaces,
which further contributes to the improved accuracy
of conducted studies and measurements.

Conclusion

A thin-layer heat-resistant glass-ceramic coating
was obtained on 12Cr18Nil0Ti steel samples using
the slurry-firing deposition method. The coating exhi-
bits a heterogeneous structure, consisting of a barium
silicate glass matrix with uniformly distributed Cr,O,
particles. In the outer layer of the coating, with a thick-
ness of approximately 3—5 um, numerous highly dis-
persed BaSi,O, crystals doped with Cr and Mo were
identified, indicating surface crystallization of the glass
phase. The coating is characterized by a low density
of 3.813 g/cm® and a highly continuous structure.
The heat capacity, thermal diffusivity, and thermal con-
ductivity of the coating within the temperature range
of 293-573 K and at a pressure of 103 Pa vary within
the ranges of 0.68-0.75 J/(g'K), 0.47-0.43 mm?/s, and
1.198-1.222 W/(m-K), respectively.

Fire tests of the coating were conducted under con-
ditions of aerogas-dynamic flow and non-equilibrium
heating by air plasma at a speed of approximately
3.5km/s and a specific heat flux of 15-30 W/cm?,
achieving temperatures of up to 1593 K on the front
surface. The average values of specific mass loss
and erosion rate of the coating were 7.2 mg/cm? and
25.9 mg/(cm?-h), respectively. The spectral emissivity
of the coating at a wavelength of 890 nm and the hete-
rogeneous recombination rate of atoms and ions on its
surface were determined to be 0.85+0.02 and 14+3 m/s,
respectively. The glass phase effectively protects
the steel from high-temperature oxidation and facili-
tates self-healing of defects. The presence of refractory
Cr,0, particles, along with the surface crystallization
of the glass phase, enhances the coating’s resistance
to erosion in high-speed air plasma flow, its emissivity,
and catalytic activity.

A reduction in the coating’s thermal conductivity
to 0.04+0.01 W/(m-K) at a temperature of 1054=10 K
and a pressure of ~200 Pa was experimentally estab-
lished and confirmed by numerical simulation.
An explanation of this effect has been provided.
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Abstract. The oil production process is often accompanied by various failures at oil production facilities, which leads to serious economic
losses. Failures in oil production systems not only increase repair and maintenance costs, but also lead to loss of productivity, which
has a negative impact on the economic efficiency of projects. A pipeline failure is considered to be its complete or partial shutdown
due to a violation of its tightness or tightness of the shut-off valves, or due to blockage of the flow section. The most common causes
of complications in oil production are: corrosion of oil and gas equipment, formation of asphalt-resin-paraffin deposits (ARPD) and
inorganic salt deposits on the working surface of oil and gas equipment. There are a large number of methods aimed at preventing each
of the previously mentioned complicating factors. It is noteworthy that the use of protective coatings can be a measure of prevention
of corrosion processes, ARPD, and inorganic salt deposits. This article will review the literature, which will consider what proper-
ties, composition and structure protective coatings should have to prevent corrosion, ARPD and salt deposits, as well as what testing
methods can be used to evaluate the ability of a protective coating to prevent these complicating factors.

Keywords: protective coatings, types of coatings, corrosion, asphalt-resin-paraffin deposits, salt deposits, coating testing methods
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AnHoTayums. Tlpouecc usBnedeHnss He()TH YaCTO COMPOBOXKAACTCS PA3IMIHBIMH OTKa3aMH Ha 00beKTax He(TemTOOBIYH, YTO BEAET
K CepbhE3HBIM SKOHOMUUECKHUM MoTepsiM. OTKa3bl B CHCTEMaxX He(TeTOOBIMH HEe TOIBKO yBEINYUBAIOT 3aTPATHl HA PEMOHT U 00CITy-
JKMBaHKE, HO TAaKXKe MPHUBOIT K MOTEPE MPOU3BOJUTEIBHOCTH, YTO HETATUBHO CKa3bIBACTCS HA SKOHOMHYECKON 3 ()EKTHBHOCTH
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npoekToB. OTKa30M TpyOOIPOBO/A CIUTAETCS MOJIHAS WM YaCTHIHAS €0 OCTAHOBKA BCIICCTBHE HAPYIICHUS €r0 TepMETHIHOCTH
W TePMETUYHOCTH 3aIIOPHOM apMaTypsl, MO0 10 NMPUYMHE 3aKyIOpPKH IPOXOAHOro cedeHus. Hanbonee pacrnpocTpaHeHHBIMU
MPUYMHAMHA OCIIOKHEHHH B He(TenRo0bIue SBISIIOTCS KOPPo3us HedTera3oBoro odopynoBaHus 1 oOpa3oBaHue ac(haabToCMOJIONa-
pacdunoBBIX oTnOXKEeHHH (ACIIO) M HeOpraHMYECKHX COJNEOTIOKEHUH Ha pabodell MOBEPXHOCTU HE(TEra3oBOro 0O0OPYHOBAHUS.
Cpenn GOJIBIIOTO KOTMYIECTBA METOIOB, HATIPABICHHBIX HA IPEIOTBPAICHIE YKa3aHHbIX OCIOXKHSIOINX (haKTOPOB, BechbMa dhdek-
THUBHO IIPIMCHEHHE 3AIUTHBIX MOKPBITUH, KOTOPOE MOXKET SIBIATHCS MEpOi MPO(MIAKTUKH H KOPPO3HOHHEIX nporeccos, u ACIIO,
U HEOPTaHWYECKHUX COJICOTIOKEHHH. B HacTosmmiell crarbe mpoBeneH 0030p JIUTEPAaTypHBIX MCTOUYHHKOB: PACCMOTPEHO, KAaKHMMHU
METOZIaMH HCIIBITaHNI MOYKHO OLICHUTB CIOCOOHOCTH 3AIIUTHOTO ITOKPBITHS MPEJOTBPAIIATh BO3MOXKHBIC OCIOXKHSIOMNE (aKTOPHI.

KnioueBbie coBa: 3alUTHBIC TOKPBITHS, BHABI HMOKPBITHH, KOppo3us, ac(ansrocMoionapaguHOBbIE OTIOKEHHS, CONCOTIOKCHHUS,

METObI UCIIBITAHUSA HOKpBITHf/II

Ansa untuposanusa: I0nun [1.E. ®yHKIHOHAIBHBIC IOKPBITHS TOTPYKHOTO HEPTEITPOMBICIIOBOTO 000PYIOBAHUS IS 3aIIIUTHI OT KOP-
po3uu, achanbTocMoIonapagUHOBBIX U CONIEBBIX OTIOXeHU: O030p. H36ecmus 6y306. [lopowkosas memaniypeus u yHKYuoOHab-
note noxpomus. 2025;19(1):58-74. https://doi.org/10.17073/1997-308X-2025-1-58-74

Introduction

Oil and gas fields are gradually entering the late
stage of development, which is accompanied by
increasing complexity in operational processes [1; 2].
At this stage, the risks of equipment failures rise signif-
icantly due to a number of factors specific to this phase
of the field’s lifecycle. Various complicating factors act
jointly and interdependently at oilfields. However, each
well typically has one dominant complication type,
which serves as the primary cause of most failures.
The distribution of so-called complicated wells across
different production companies by their main compli-
cation type provides valuable insights into the scale and
actual prevalence of corrosion-related issues within
the industry.

The structure of complicated wells at LLC RN-Pur-
neftegaz includes only 18 % of wells prone to the for-
mation of asphalt-resin-paraffin deposits (ARPD), 13 %
of wells where failures are caused by salt deposits,
and only 6 % of wells where corrosion is the primary
complication. It is important to note that the number
of failures related to corrosion significantly decreased
only after the implementation of corrosion-resistant
pipes; however, it still remains high [3]. At Udmurtneft
PJSC, corrosion accounts for 39 % of well failures [4].
A substantial number (26 %) of Udmurtneft’s wells
are affected by ARPD, while 1 % of the wells expe-
rience complications due to inorganic salt deposits [4].
As of early 2022, the complicated well stock of PJSC
Lukoil included 14,271 wells, representing 45 %
of all operating artificial lift wells [5]. The structure
of Lukoil’s complicated well stock consists of 74.8 %
of wells affected by ARPD, 9.5 % by corrosion, and
3.8 % by inorganic salt deposits [5].

Corrosion is a fundamental issue in any industry
dealing with chemically active environments. In oil
and gas production, its consequences include the irre-
versible loss of pipe metal [6], costs associated with
equipment replacement, lost profits due to well down-

time during repairs, as well as expenses related to miti-
gating accident consequences and maintenance of cor-
rosion protection systems. All these factors increase
production costs and reduce field profitability.

Globally, corrosion results in substantial direct and
indirect financial losses [7-9]. In Russia, annual metal
losses due to corrosion amount to 12 % of the country’s
total metal reserves, which is equivalent to the same share
of the annual steel production. Approximately 10 million
tons out of the 70 million tons produced annually are lost
to corrosion, which translates into financial losses of USD
8 billion. Nationwide, 400,000-500,000 tons of steel are
used annually to replace various types of pipelines [6].

Complications associated with the formation
of ARPD [10-13] and inorganic salt deposits are no
less significant, as they lead to partial or complete
blockages of the internal pipe cross-section, resulting
in reduced production rates or even cessation of oil
extraction [14-16].

The most effective solution to combat these types
of complications today is the application of various
functional coatings — polymeric, ceramic, and metal-
lization — depending on the type of equipment being
protected [17].

This article reviews the application of various
functional coatings for oil and gas equipment aimed
at counteracting complicating factors.

Functional internal coatings
for tubing

Tubing (TBQ) is one of the key components of sub-
mersible oilfield equipment, susceptible to corrosion,
asphalt-resin-paraffin deposits (ARPD), and salt depo-
sits on its inner surface, which is in direct contact with
the extracted medium. The housings of submersible
electric motors (SEM) and electric submersible pumps
(ESP) are exposed to the extracted media from their
external surface. It should be noted that cases of contact
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between the medium and the external surface of tubing
are possible; however, on the one hand, such occur-
rences are rare, and on the other hand, the only avai-
lable method of protection against corrosion in such
cases is the use of alloyed corrosion-resistant steels.

Currently, there is no established classification sys-
tem for internal tubing corrosion protection methods.
Therefore, the author has proposed a classification
(Fig. 1) that summarizes various approaches — rang-
ing from traditional steel alloying to the development
of duplex coatings [18; 19], which combine sacrificial
and barrier properties.

Austenitic stainless steel tubing is not manufactured
due to its extremely high cost combined with relatively
low strength properties [20]. However, this class of steel
has found its application in the production of liners
(thin-walled internal metal tubes) used in bimetallic
pipes [21]. The installation of liners in production and
tubing pipes can be performed using several methods;
however, currently, only two methods have been
implemented in Russia [22-24]. In both cases, the first
step involves inserting a liner with a diameter smaller
than the internal diameter of the tubing. The liner is
secured by mechanical interference through roller
expansion [25] or by a hydraulic method [26]. In both
methods, the gap between the liner and the tubing is
eliminated, and the resulting interference fit ensures
a stable liner position under all permissible operational
loads. In large-diameter pipes (used for trunk oil and
gas pipelines), a metallurgical method is applied, form-
ing a diffusion transition zone between the metals.

Various austenitic stainless steels with different
chemical compositions can be used for this technology.

The most commonly used steels are AISI 304, being
the most cost-effective in this class; however, their cor-
rosion resistance is often insufficient for highly miner-
alized environments. In such cases, more highly alloyed
steels such as AISI 316, 316L, or 825 are required.

The advantages of this technology include the rela-
tively low cost of tubing with liners compared to pipes
made entirely from liner material; the ability to achieve
near-absolute corrosion resistance by selecting an
appropriate liner material; and the absence of tempera-
ture limitations typical for polymer coatings. However,
the disadvantages of this technology include higher
costs compared to low-alloy steel pipes, low effi-
ciency if the liner material is improperly selected, lack
of reliable methods for protecting the annular space
of couplings at pipe ends, and an increase in tubing
string weight by 8-11 %.

It is also important to highlight the risk of pitting
corrosion in austenitic steels when exposed to envi-
ronments with high chloride ion (CI") content. Fig. 2
shows an example of the operation of a tubular com-
ponent made from AISI 316 steel as part of a pipeline
transporting seawater. The corrosion rate of the com-
ponent was 12.8 mm/year. This phenomenon is most
likely to occur due to B-phase precipitation, such as
during cold plastic deformation. Before operating
in such environments, it is mandatory to conduct pit-
ting corrosion resistance testing in ferric chloride solu-
tion according to GOST 9.912-89.

Bimetallic pipes with an internal liner can be con-
sidered a specialized type of coated pipe, with the liner
serving as a protective barrier. The mechanism by
which the liner provides protection is similar to that

Methods for combating corrosion
of the inner surface of pipes

l

| A
Use of Creation
Corrosion-Resistant of barrier layers
Alloys using
(13Cr, 316L, etc.) various film-forming
or alloys materials

with enhanced
corrosion resistance
(13KhFA, OS5KhB,
etc.)

(lacquer coatings,
enamel coatings,
silicate-enamel
coatings)

Application Inhibitor
of electrochemical protection
protection methods

(sacrificial Bimetallic

protection) tubes (lining)

!

— metallization coatings
— intermetallic coatings

Comprehensive effect is provided by:

Fig. 1. Classification of methods for combating corrosion on the inner surface of tubing strings

Puc. 1. Knaccudukanus MeTooB 60ps0bI ¢ KOppo3Keil BHYTpEHHEH MOBEPXHOCTH HACOCHO-KOMITPECCOPHBIX TPYO
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of conventional coatings, resulting in comparable per-
formance requirements for both. Based on an analysis
of liner steel corrosion, manufacturing technologies, and
operational factors, GOST 70926-2023, “Tubing with
Internal Liner. Technical Specifications”, was deve-
loped under the author’s supervision. Pipes produced
in accordance with this standard have been in trouble-
free operation across Russia for more than three years.
Their use commenced even before the official publica-
tion of GOST 70926-2023, following the completion
of research and development activities that formed
the basis for the standard. Condition monitoring has
shown no signs of corrosion damage to the liner. The ser-
vice life of these pipes is primarily constrained by factors
such as length reduction due to repeated thread cutting,
external surface corrosion, and mechanical damage.

The most commonly used corrosion-resistant steels
are alloyed with chromium in concentrations of 13 %
or more. According to Schaeffler’s rule, their protec-
tion mechanism is based on the formation of a pas-
sive chromium oxide film on the surface, which is
resistant to interaction with corrosive gases dissolved
in the produced fluid. Traditionally, Cr13-grade steel
pipes are considered the benchmark for corrosion resis-
tance; however, their widespread adoption is limited
by their high cost. Certain factors significantly reduce
the service life of such pipes and lead to premature
failure, all of which are associated with the degrada-
tion of the passive layer. Since the produced fluid lacks

e - —p

C|Si|Mn[Cr|[Ni| S| P [Cu]|Mo
0.0310.51|1.77[16.819.19/0.05{0.01]0.43]1.80

Fig. 2. Longitudinal section of the tubular component wall
made of AISI 316 steel after 3 months of operation as part
of a seawater pipeline

Puc. 2. TIpoposbpHOE ceueHne CTEHKH TPYOUaToro u3aesust
n3 cranu AISI 316 mocne 3 MecsIeB SKCIITyaTally B COCTaBe
TpyOONPOBOZa MOPCKOW BOMIBI

oxygen, repassivation is not possible. The operational
limitations of Cr13-grade pipes include the following:
acid treatments, mechanical wear (including erosion),
and cable insulation failure. In the presence of hydro-
gen sulfide in the well and acid treatments, sulfide
stress corrosion cracking (SSCC) may occur [27; 28],
which is typical for low-alloy steels with a hardness
exceeding 22 HRC.

The term “steel with enhanced corrosion resistance”
was introduced in Russia in the mid-2000s. This class
includes steels alloyed with 0.5-1.0 % Cr, often with
the addition of niobium or vanadium to refine the grain
structure, as well as copper. However, according
to GOST 5272-50, these steels are classified as low-
alloy and are not considered corrosion-resistant (it is
worth noting that the later and currently relevant edi-
tion, GOST 5272-68, does not include a corrosion
resistance scale, nor is the term “steel with enhanced
corrosion resistance” mentioned in other regulatory
documents). The experience of their implementation
has been mixed, and given their relatively high cost,
they are not considered an optimal solution [29].

The optimal solution for protecting the inner surface
of tubing from complicating factors is the use of various
functional coatings [17; 30; 31]. Despite the wide vari-
ety of available coatings, in practice, only silicate-
enamel (SEC), polymer, and duplex (intermetallic
layer + polymer layer) coatings are commonly applied.

Silicate-enamel coatings are formed from a slurry
prepared using frits of MK-5 and MK-5U grades with
the following composition (wt. %): 0.5-3.5 AL,O;;
10.0-16.0 B,O;; 8.0-16.0 Na,O; 0.5-5.0 K,0;
2.0-5.0 Li,0; 2.0-8.0 CaO; 0.1-1.0 MgO; 3.0-6.0 TiO,;
0.5-5.0 MnO,; 0.3-2.0 NiO; 0.2-2.0 CuO; 0.3-1.5 CoO;
0.1-1.5 Fe,O;; and 0.5-4.0 F (in excess of 100 %).
The coating can be applied using either a liquid or pow-
der method, followed by firing at temperatures ranging
from 850 to 950 °C. During the firing process, gases
are released, which, upon cooling, result in the forma-
tion of porosity, often characterized by through-pores.

Despite their excellent resistance to ARPD forma-
tion, the use of tubing with silicate-enamel coatings
(SEC) in the oil and gas industry has been declining,
with the total volume not exceeding several thousand
tons as of 2024. This reduction is attributed to several
significant limitations:

— through-pore porosity in single-layer coatings
(Fig. 3), which leads to severe pitting corrosion beneath
the pores;

—high brittleness, which imposes restrictions on
mechanical impacts and thread tightening torque;
exceeding these limits can result in enamel chipping,
particularly in the nipple area at the pipe ends;
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— heat curing requirements at 850-950 °C, which
prevent the use of heat-treated steel pipes, as such tem-
peratures degrade their mechanical properties;

— higher costs compared to polymer coatings, pri-
marily due to the need for high-temperature processing.

Advancements in polymer coatings, particularly
the development of multifunctional coatings that com-
bine anti-corrosion properties with resistance to ARPD
formation, have largely negated the advantages of tub-
ing with silicate-enamel coatings.

At present, the primary method for protecting
the inner surface of tubing from complicating factors
is the application of polymer coatings [32-35]. Their
widespread adoption began in the early 2000s with
the emergence of manufacturers such as MajorPack
and Hilong. Although several production lines existed
in Russia before this period, their products were not
widely used. In the early stages of development,
various film-forming coatings were applied, such as
the polyurethane-based PolyPlex coating. However, it
demonstrated an extremely short service life (typically
less than 30 days), leading to its swift abandonment
within the industry.

Polymer coatings offer several advantages over
other protective methods against complicating factors.
They provide extended service life for equipment and
pipelines by protecting against corrosion and wear, sig-
nificantly prolonging operational lifespan and reduc-
ing repair and replacement costs. Maintenance costs
are also lower, as polymer coatings minimize the need
for frequent servicing and repairs. Additionally, they
enhance oil production and transportation efficiency by
reducing friction, preventing deposits such as ARPD
and inorganic salts, and improving thermal insulation,

Silicate-enamel
coating )

O

Fig. 3. Formation of pitting corrosion through the mechanism
of carbon dioxide corrosion in a silicate-enamel coating

Puc. 3. O6pa3oBaHue A3Bbl 110 MEXaHU3MY YIVICKHCIIOTHOM
KOPPO3UH B CUIIMKATHO-IMAJICBOM ITOKPBITHI
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which leads to greater system performance. The risk
of failures is reduced, as effective corrosion and wear
protection helps prevent breakdowns associated with
equipment deterioration. Furthermore, polymer coa-
tings offer significant cost savings by extending service
life and decreasing maintenance and repair expenses.
Lastly, they provide environmental benefits by reduc-
ing emissions and leaks through improved corrosion
resistance and enhanced equipment protection [36; 37].

The classification of coatings used to protect
the inner surface of tubing is shown in Fig. 4.

There are several methods for applying internal
polymer coatings, with the most commonly used being
airless spraying and electrostatic application. The air-
less spraying method applies liquid coatings to the sur-
face without the use of an air stream. Instead, high pres-
sure forces the material through a nozzle, breaking it
into fine droplets that uniformly coat the surface. This
technique provides higher efficiency and better applica-
tion quality compared to conventional air spraying and
allows for the application of high-viscosity coatings
with 100 % solids content. Electrostatic application, on
the other hand, involves applying a layer of polymer
powder to the product’s surface using an electrostatic
field. In this process, the polymer particles are electri-
cally charged and attracted to the surface, which has an
opposite charge, ensuring a uniform and durable coat-
ing [38].

Initially, the effectiveness of internal coatings was
questioned, as early applications utilized cold-cured
epoxy resins based on Bisphenol A and epoxy novolac
resin in an approximate 2:1 ratio (Fig. 5). The fillers and
pigments commonly used in these coatings included
micronized barite (BaSO,), aerosil (fumed silica, SiO,),
titanium dioxide (TiO,), and tale (Mg,Si,0,,(OH),).
Their concentrations varied depending on the formula-
tion, but the total filler content typically did not exceed
50 %. These coatings exhibited relatively low glass
transition temperatures (usually below 60 °C), limited
chemical resistance, and restricted operating tempera-
ture ranges. They were applied using dual-component
airless spray systems.

The degradation of pipes with the aforementioned
type of coatings (Fig. 6), as evidenced by more than
40 expert studies conducted under the author’s supervi-
sion, highlights the low barrier properties of these coat-
ings. The service life before the onset of blistering and
delamination typically does not exceed 2-3 years for
field pipelines. The use of such coatings for tubing pro-
tection is viable only at relatively low temperatures (up
to 40 °C) and in cases where complications are limited
to ARPD. Even under these conditions, their service
life rarely exceeds 1 year.
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Inner Polymer Coatings
for Pipes

By curing
type

Non-thermosetting Thermosetting

By phisycal
state of the coating
layer
(polymer binder
molecular weight)

Liquide Powder

By number of layers

Two-layer Single-layer

Fig. 4. Classification of polymer coatings used to protect
the inner surface of tubing

Puc. 4. Knaccuuraiys moIuMepHBIX MOKPHITHIA,

MIPUMEHSIOIUXCA A7 3alUThl BHyTpeHHel nosepxnoctd HKT

Metall

BaSQ( Slow& ..
|
—

Coating

Fig. 5. Structure of a typical liquid non-thermosetting internal
epoxy coating for an oil pipeline

Puc. 5. CtpykTypa THITHYHOTO KMIKOTO HETEPMOOTBEPKAAEMOT0
BHYTPEHHETO SMOKCUAHOTO TOKPBITHS HE(YTEMPOBOAHOM TPyObI

The liquid thermosetting epoxy novolac coating (its
structure shown in Fig. 7) stands apart from other coa-
tings due to its higher concentration of novolac resin,
with an epoxy novolac resin to Bisphenol A-based resin

Blister cracking

Metall Coating

Blisters

Metall | 200 KM

Fig. 6. Degradation of liquid non-thermosetting internal epoxy coatings used in &426x8 mm oil collection manifold
at the Mamontovskoe field (¢) and @73%5.5 mm production tubing at the Krapivinskoe field (b)

Puc. 6. PazpymieHne »XUIKUX HETEPMOOTBEP KIAEMbIX BHYTPEHHHX SIIOKCHIHBIX MTOKPBITUH, SKCIITYaTHPOBABIIIXCS
B cocTaBe HepTecOOpHOTo KoJuteKTopa &426%8 MM MaMOHTOBCKOTO MECTOPOXKICHUS (@)
u nobwiBaromeit ckBaxkuuabl HKT @73%5,5 mm Kpanmeuackoro mectopoxaenust (b)

63



DM v on

W3BECTUA BY30B

U3BECTUA BY30B. TOPOLIKOBAA META/IIYPTUA U ®YHKLMUOHANDBHLIE MOKPbITUA. 2025;19(1):58-74
tOAuH I1.E. DYHKLMOHANbHbIE MOKPbITUA MOTPYXKHOMO He$TENPOMBICIOBOTO 060PYA0BAHUA A/ 3aLUMTbI OT KOPPO3UMK ...

ratio of >1:1, and the inclusion of a reactive diluent.
This diluent lowers the viscosity of the epoxy composi-
tion, facilitating easier processing while also participat-
ing in the curing reaction and becoming an integral part
of the polymer matrix. The application process is simi-
lar to that of non-thermosetting liquid epoxy coatings,
with the key difference being the requirement for an iso-
thermal curing hold at 180-200 °C for at least 20 min.

This type of coating is the most commonly used
for tubing protection, as it delivers the required per-
formance characteristics at relatively small thicknesses
(~150 um). It also enables the application of two-
layer coatings, allowing for formulation optimization
at smaller production facilities. The industry-wide use
of these coatings is estimated to be 85-90 %.

In the past three years, two-layer powder coatings
have been increasingly adopted, consisting of a primer
layer with a thickness of 540 pm and a top layer
of >350 um made from a powder composite material
(Fig. 8). The primer is a paint-and-lacquer material com-
posed of a blend of high-molecular-weight epoxy and
phenol-formaldehyde resins, butyl cellosolve, toluene,
and, in most cases, iron oxide pigment, which actively
reacts with hydrogen sulfide during operation or testing.
The powder coating is applied electrostatically to a pre-
heated surface at a temperature of 160-200 °C. Its com-
position includes high-molecular-weight epoxy resin
and a significant amount of fillers (up to 70 %), with
a composition similar to those described earlier. This
technology offers several advantages, including superior
barrier properties, lower costs compared to other pro-

Powder coating

Coating

BaSO,, TiO,, SiO,

50 um

Metal _

Fig. 7. Structure of a typical liquid thermosetting internal
epoxy coating for an oil pipeline

Puc. 7. CTpyKTypa TUIMYHOTO KHUAKOTO TEPMOOTBEPIKAAEMOrO
BHYTPEHHETO IIOKCUIHOTO MOKPHITHS HE(TEPOBOAHON TPYObI

tective methods, high process efficiency and maintain-
ability, and the ability to apply multifunctional coatings.

Additionally, the absence of solvent evaporation
during application makes this method more environ-
mentally friendly and safer for production workers,
which is why it is the only permitted option in most
countries. The production volume of tubing with
internal functional coatings is expected to exceed
100,000 tons by the end of 2024 (based on the weight
of @73%5.5 mm tubing) and continues to grow at a rate
of 8—12 % per year.

—
19 pm

v 7 pm
e

Primer

R

BaSO,, TiO,, SiO,

Metal

100 pm
—

Fig. 8. Structure of a typical two-layer powder coating with an epoxy-phenolic primer

Puc. 8. CtpyKTypa THITHYHOTO JIBYXCJIOHHOTO TIOPOLIKOBOTO MOKPBITHS € STIOKCH(EHOIBHBIM IPaiiMepoM
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A relatively new technological solution is the use
of duplex coatings, where the first layer consists
of thermodiffusion zinc (TDZ), forming Fe—Zn inter-
metallic compounds, followed by one or more polymer
layers [39]. These coatings demonstrate higher corro-
sion resistance in hydrogen sulfide-containing environ-
ments, as confirmed by laboratory autoclave exposure
tests conducted over 2352 h, compared to the standard
test duration of 240 h specified by GOST 58346-2019.
The test involved exposing samples with two types
of coatings in an autoclave under a partial gas pressure
of H,S — 1 MPa, N, — 9 MPa at a temperature of 80 °C.
The results showed the presence of iron sulfide
at the metal-coating interface in pipes without the TDZ
layer, whereas no corrosion products were detected on
duplex-coated pipes (Fig. 9). It should be noted that
the autoclave testing methods used in this experiment
and outlined in GOST 58346-2019 are based on previ-
ous research [40; 41]. The widespread adoption of auto-
clave testing methods has led to a significant increase
in the service life of tubing with internal coatings.
Although exact statistical data is not publicly available,
sources accessible to the author indicate that the ave-
rage service life has increased from 418 to 786 days.
However, the disadvantages of duplex coatings include
higher costs compared to conventional polymer-coated
pipes and the limited availability of reliable solutions
for protecting the external surface from corrosion.

A key trend in the development of tubing with inter-
nal coatings is the creation of multifunctional coatings
that combine anti-corrosion and anti-abrasion proper-
ties while also preventing ARPD and inorganic salt
deposition [42—45]. Until recently, advancements in
coating formulations and application technologies —
such as the introduction of non-thermal microwave

Polymer i ~
coating

.- -] s
R Infermetéllic‘corhpound " -

e R g

No corrosion products detected

500 um
—

Fig. 9. Surface condition of the metal-intermetallic layer (Fe—Zn)
after an autoclave test for 2352 h

Puc. 9. CocTosiHHE TOBEPXHOCTH «METaJUI-HHTEPMETAIIHIHBIN
cnoit (Fe—Zn)» mocine aBTOKIaBHOTO TecTa B TeueHue 2352 4

treatment [46] — were limited by the lack of standardi-
zed laboratory testing methods. The applicability
of each coating was primarily determined through field
pilot tests (FPT), which typically take about one year
to complete.

To address the challenge of simulating ARPD for-
mation under controlled conditions, two circulating
test benchs were developed and manufactured under
the author’s supervision [47; 48]. The test medium
used in these test benches is an oil emulsion samp-
led from wells affected by ARPD, further enriched
with deposits obtained during cleaning operations.
The design of the test benches allows for adjustments
in the composition of the test medium, flow rate,
medium temperature, and the external surface tem-
perature of the sample. The temperature difference
across the inner surface of tubing samples — used as
test specimens — facilitates the formation of deposits.
The capabilities of these benches cover a wide range
of well conditions, from low- to high-production wells,
with varying temperature regimes influencing ARPD
formation.

Research findings indicate that parameters such
as surface roughness, paraffin adhesion to a dry sur-
face, and the contact angle of distilled water on a dry
surface do not provide a reliable assessment of a sur-
face’s resistance to ARPD deposition. The laboratory
method for determining the contact angle by measuring
the spreading of an oil droplet in water on the coating
surface has shown the highest correlation with test
bench results [49]. The best ARPD resistance results
were demonstrated by hydrophilic surfaces; however,
they exhibited poor corrosion resistance. Therefore,
the use of multifunctional coatings or two-layer sys-
tems is required to achieve balanced performance.

Experimental studies have established a correlation
between ARPD deposition and flow rate (Reynolds
number), allowing for the ranking of coatings based on
their resistance to ARPD. Silicate-enamel coatings pro-
vide the highest resistance, followed by polymer coa-
tings, while bare steel samples show the lowest perfor-
mance (Fig. 10). The obtained results align with data
from field pilot tests and the operational performance
of these coating types across various oilfields.

Another important step in expanding the applica-
tion of functional polymer coatings was the develop-
ment of a test bench (Patent No. RU2825169C1) and
a methodology to evaluate the effectiveness of coa-
tings in preventing inorganic scale formation [50].
The goal of the test trials was to identify the coating
with the highest resistance to scaling under oilfield
conditions. The coatings’ resistance to scaling was
assessed based on the mass of inorganic scale formed
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on the outer surfaces of cylindrical samples and
the thickness of the resulting scale layer.

The results of the test trials evaluating the resis-
tance of coatings to gypsum-type (CaSO,) scale for-
mation with halite (NaCl) impurities were published
in [51]. It was found that none of the tested protec-
tive coatings could completely prevent the formation
of gypsum scale with halite impurities on their sur-
face. The study [51] also concluded that the adhesion
strength of the “scale—coating” interface does not play
a decisive role in the anti-scaling properties of protec-
tive coatings. The findings showed that scale depos-
its can form even on surfaces with minimal adhesion
strength. These deposits are capable of creating solid
structures with little to no interaction with the sur-
face. Further analysis in [52] compared the results
of the test trials [51] with the roughness parameters
of the tested protective coatings to evaluate the effect
of surface roughness on scaling. A certain correlation
was observed between the coating’s roughness index
and the mass of the scale layer formed on it. The steel
sample with the highest surface roughness exhibited
the most significant increase in the scale layer mass dur-
ing dynamic tests. However, the relationship between
surface roughness and scale formation mass was not
strictly linear [52].

Since studies [51] and [53] both found that none
of the examined coatings could completely prevent
scale formation, further research focused on assessing
the combined use of coatings with other preventive
methods. In study [54], laboratory-scale dynamic tests
were conducted to evaluate the feasibility of integrating
internal protective tubing coatings with scale inhibi-
tors. The findings showed that the combined approach
can provide the following benefits:

Re
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Fig. 10. Dependence of asphaltene-resin-paraffin deposit mass
on the flow rate of the oil medium on various surfaces

1 - GIOTEK 110M, 2 - MPLAG17,
3 — silicate enamel MK-5, 4 — uncoated

Puc. 10. 3aBucumocts macce Boitiaaenus ACITIO ot ckopoctu
MOTOKA HE(TSIHOM CpeJibl Ha Pa3IUUHBIX TOBEPXHOCTSAX

1-TUOTDK 110M, 2 - MPLAG17,
3 — cunukatHo-sManieBoe MK-5, 4 — 6e3 mokpeITHS
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— coated surfaces had fewer crystallization centers
for inorganic scale deposits compared to uncoated steel
surfaces;

—during testing (with a scale inhibitor dosage
of 200 g/m?), the formed scale deposits detached more
readily from the coated samples [54].

Coating of SEM and ESP housings

Various corrosion protection methods are employed
to mitigate the corrosive impact and extend the service
life of submersible electric motors (SEM) and electric
submersible pumps (ESP). (Hereinafter, the discussion
will focus solely on SEM housings; however, all con-
clusions are equally applicable to ESP housings.) One
of the simplest and most cost-effective ways to enhance
the service life of SEM housings while reducing
exposure to aggressive factors under field conditions
is the application of metallization coatings. Among
the most widely used methods for applying such coa-
tings are electric arc spraying (EAS ) and high-velocity
oxy-fuel (HVOF) spraying [55—60].

An analysis of the causes of SEM and ESP housing
failures was conducted under the author’s supervision
in four oil-producing regions with various complicating
factors. The study revealed that corrosion of the SEM
housing is the most common cause of failure [61-63].
The examination of SEM housings with metalliza-
tion coatings applied using technologies implemented
at pipe bases after operation allowed the identification
of key causes of failure, including mechanical damage,
abrasive wear of the coating, low barrier properties,
and imperfections in the coating application techno-
logy (Fig. 11). Additionally, cases were identified
where multiple negative factors were simultaneously
present, making it impossible to determine the domi-
nant failure mechanism. In many cases, these factors
create a synergistic effect — for example, the simulta-
neous presence of a corrosive environment and abra-
sive particles results in corrosion-erosion wear, which
occurs at a significantly higher rate compared to either
corrosion or erosion alone [61].

The primary challenge in ensuring the operational
reliability of SEM housings was the development
of methodologies that simulate the effects of key com-
plicating factors and conducting laboratory tests on
various types of metallization coatings. The results,
summarized in [61], onfirm the feasibility of accu-
rately modeling the destructive impact of key comp-
licating factors through autoclave tests in H,S- and
CO,-containing environments [64; 65]. To determine
the corrosion resistance of metallization coatings,
samples must undergo autoclave exposure for 240 h.
Testing typically involves the combined exposure
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to aggressive gases (CO,, H,S). In order to isolate
the corrosion effects of individual system components,
tests can also be conducted in environments saturated
with only carbon dioxide or hydrogen sulfide. To pre-
vent decompression effects, pressure release must take
at least 10 min [64].

Electric arc spraying (EAS) was selected as the pri-
mary coating application method due to its high process
efficiency and equipment mobility. EAS coatings made
of stainless steel materials based on iron and nickel
were applied with a target thickness of 350-500 um.
The chemical composition of the metallization
coatings included various elements in specific
proportions (wt. %):

—Cr~6.6+14.5;Ni~4.4+8.4; Mo ~2.5;Si~2.0+3.7;
Fe — balance;

—Cr~13.0+16.0; Ni~ 7.3+9.8; Mo ~ 3.5; Si ~ 2.9+3.7;
Al ~ 1.0; Fe — balance;

—Cr~17.7+18.6; Ni~ 8.5+8.9; Ti ~ 0.6; Si ~ 0.5+0.7;
Fe — balance.

The physical and mechanical properties of EAS
coatings were found to be low due to significant poro-
sity and oxide layers between particles. Metallization

Metallization
coating

Coating peeling

250 pm
—

Metal

coatings applied using iron-based wires (Fig. 12, a)
without additional impregnation or an external poly-
mer layer proved to be ineffective against corrosive
environments. In contrast, nickel-based wire coatings
(Fig. 12, b) demonstrated resistance in acidic environ-
ments but lacked sufficient protection against CO,- and
H,S-saturated conditions, indicating their inability
to provide long-term protection. To reduce particle oxi-
dation during spraying, an argon protective atmosphere
was used (Fig. 12, ¢, d), which resulted in a 55 %
improvement in physical and mechanical properties
compared to coatings applied in open air; however,
corrosion resistance remained unsatisfactory [66].

Impregnation materials are commonly used to seal
coating pores [67; 68]. The study utilized polymer-
based impregnating materials, including epoxy-phe-
nolic, acrylic, and polytetrafluoroethylene composi-
tions with thicknesses of 70—150 pm. The application
of impregnation materials improved the corrosion
resistance of the metallization layer; however, even
minor damage to the impregnated coating on iron-
based layers resulted in rapid degradation. Therefore,
the use of iron-based coatings with impregnation was
deemed impractical.

Metallization
coating

-y L

Length: 1

- - - oy
01.6 pm Length: 2162 um *

Corrosion products

250 um
—
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Fig. 11. External view of the SEM housing with peeling and blistering of the metallization coating (a);
destruction in the form of swelling of the coating (b); formation of corrosion products at the site of local damage to the coating (c)

Puc. 11. Bueurauii Buz xopiyca [19]] ¢ oTCI0CHHAME U B3AYTUAME METAJUTN3AIMOHHOTO TIOKPHITUS (a);
paspylieHHe B BUJE B3Iy THs OKpbITHs (b); 00pa3oBaHKE POIYKTOB KOPPO3HH B MECTE JIOKAIBHOTO MTOBPEKICHHS TOKPBITHS (C)
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100 um - 100 um
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Fig. 12. Microstructure of the coating

a — EDM, iron-based wire; b — EDM, nickel-based wire; ¢ — EDM in an argon environment, iron-based wire;
d — EDM in an argon environment, nickel-based wire; e — ADM, iron-based wire; f— VSGPN, self-fluxing nickel-based powder;
g — VSGPN, tungsten carbide powder in a cobalt matrix; # — EDM, nickel-based wire impregnated with epoxy-novolac resin

Puc. 12. MuKpoCTpYyKTYpPbI Pa3IMUHbIX TOKPBITHI

a — DJIM, npoBoJIoKa Ha OCHOBE xkene3a; b — IIM, npoBoJIOKa Ha OCHOBE HUKEJIS;
¢ —DJIM B cpenie aprona, IpoBOJIOKa Ha OCHOBE xkele3a; d — DJIM B cpeze aprosa, IpoBOJIOKA Ha OCHOBE HUKEJIS;
e — AJIM, npoBoioka Ha ocHOBe keine3a; f— BCI'TIH, camodurocyromuiicst IOpOIIOK Ha OCHOBE HUKEIIS;
g — BCI'TIH, nopomok Ha 0cHOBe KapOuaa Bonb(ppama B KOOAIETOBON MaTpHIIE;
h — 3]IM, 1poBOIOKa Ha OCHOBE HHUKEJIS C IPOIUTKOIT Ha OCHOBE IIOKCHHOBOJIAYHON CMOJIBI
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To increase the spraying flame temperature and
achieve greater particle melting, activated arc spray-
ing (AAS) was employed in a propane-air environ-
ment [69]. The use of AAS with iron-based wires
improved the physical and mechanical properties
of the coating (Fig. 12, e¢). However, due to the com-
bustion of the propane-air mixture during application,
the metallization layer still contained oxide layers that
were not resistant to aggressive environments, making
AAS coatings unsuitable in their pure form. The appli-
cation of an epoxy novolac resin-based impregna-
tion helped to limit the access of corrosive media
to the metallization layer, thus preventing its destruc-
tion. However, in areas with artificially introduced
defects such as “scratches”, the metallization layer
deteriorated, and corrosion products were observed on
the substrate.

Using high-velocity oxy-fuel (HVOF) spraying, self-
fluxing powder materials based on nickel (Fig. 12, /)
and tungsten carbide in a cobalt matrix (Fig. 12, g)
were applied with a thickness of 300-350 um. These
coatings demonstrated high physical and mechanical
properties and sufficient resistance to corrosive envi-
ronments. The HVOF-applied layer exhibited higher
density with fewer oxide films between particles, which
was achieved due to the higher particle velocity and
shorter exposure time to the gas-oxidizing environment
compared to EAS. The use of tungsten carbide-based
powder materials provided coatings with excellent
hardness and wear resistance; however, high porosity
allowed aggressive media to penetrate and lead to sub-
strate degradation.

Based on the results of the conducted studies,
the following conditions were found to provide satis-
factory outcomes:

—a nickel-based metallization layer contai-
ning ~18 % chromium and ~13 % molybdenum,
applied using EAS, followed by impregnation with
an epoxy novolac resin composition with a thickness
of 70-150 pm;

—a nickel-based self-fluxing powder metalliza-
tion layer containing ~16 % chromium, applied using
HVOF spraying.

It is noteworthy that with comparable properties,
the cost of the HVOF-applied coating is lower than that
of EAS.

Conclusion

The introduction of anti-corrosion coatings for
protecting submersible equipment used in oil produc-
tion, particularly the inner surface of tubing, began
in the late 1990s with the adoption of polymer coat-

ings. The extension of service life was accompanied
by advancements in coating formulations, transition-
ing from Bisphenol A-based epoxy resins to epoxy
novolac resins, as well as improvements in application
methods. These developments led to the introduc-
tion of thermal curing at temperatures of 170-200 °C.
A significant milestone in this evolution was the deve-
lopment of two-layer systems that combined high bar-
rier properties with resistance to ARPD and inorganic
salt deposition. Currently, manufacturers of protective
coatings face the challenge of developing multifunc-
tional single-layer coatings that combine these protec-
tive capabilities.

At the same time, continuous improvements have
been made to the composition and structure of metal-
lization coatings. Traditional coatings applied using
EAS with iron-based wires — characterized by overall
porosity levels of up to 10 % and the presence of oxide
films along particle boundaries — failed to provide ade-
quate barrier protection. This resulted in the formation
of corrosion products at the metal-coating interface,
leading to rapid deterioration. Two parallel approaches
have been pursued to enhance the operational relia-
bility of such coatings: developing high-temperature
polymer impregnations to seal porosity in the upper
layers, and adopting HVOF spraying technology,
which enables the production of non-porous, high-alloy
corrosion-resistant coatings. While the scientific basis
for these methods has been established, their full-scale
implementation at production facilities is still required,
along with efforts to replace imported components with
domestically produced alternatives.
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