Preview

Advanced search

Identification of modified Drucker-Prager yield condition and modeling of plasticized titanium raw material compaction

https://doi.org/10.17073/1997-308X-2016-2-22-29

Abstract

A computer simulation technique for the process of non-compact titanium raw material compaction is considered. The modified Drucker–Prager plasticity model is used to describe the rheological flow of strained material. It is shown that it is advisable to use an auxiliary curve based on the Bernoulli lemniscate for the identification of the accepted yield model with accuracy acceptable for engineering calculations. It allows reducing the number of experiments required to build piecewise smooth Drucker–Prager yield curve. Plastic deformation of representative volume element of titanium sponge screening in various stress-strain states was studied. The plasticizing effect related to the increase of plastic β-phase while hydrogen alloying was used to improve the formability of non-compact titanium raw materials. Based on theoretical and experimental studies, it was found that the hydrogen alloying provides a denser workpiece at constant temperature and compression force compared to the traditional compression technology of titanium sponge. It is shown that the uniformity of the relative density distribution in the axial section of the workpiece increases with the additional hydrogen alloying.

About the Authors

I. M. Berezin
IES RAS (Ural Branch); Ural Federal University
Russian Federation

PhD Eng. Sci., Researcher at the Laboratory of system simulation, 620049, Ekaterinburg, Komsomolskaya str., 34;

Senior Researcher, 620002, Ekaterinburg, Mira str., 19



A. V. Nesterenko
IES RAS (Ural Branch)
Russian Federation
PhD Eng. Sci., Researcher at the Laboratory of material micromechanics


A. G. Zalazinskii
IES RAS (Ural Branch)
Russian Federation
Dr. Sci. (Eng.), Prof., Head at the Laboratory of system simulation


References

1. Ивасишин О.М., Саввакин Д.Г., Бондарева К.А., Моксон В.С., Дузь В.А. Производство титановых сплавов и деталей экономичным методом порошковой металлургии для широкомасштабного промышленного применения // Наука та iнновацii. 2005. Т. 1. No. 2. С. 44—57.

2. Шевченко В.В., Низкин И.Д., Мальков А.В., Лукьянова Е.В. Особенности компактирования гранул титанового сплава ВТ5-1кт, легированных водородом // Изв. вузов. Цвет. металлургия. 2008. No. 3. С. 39—45.

3. Скворцова С.В., Ильин А.А., Сенкевич К.С. Формирование структуры гранул из сплава ВТ6 при термоводородной обработке // Титан. 2010. No. 4. С. 18—22.

4. Lapovok R., Tomus D., Skripnyuk V.M., Barnett M.R., Gibson M.A. The effect of hydrogenation on the ECAP compaction of Ti—6Al—4V powder and the mechanical properties of compacts // Mater. Sci. Eng. A. 2009. Vol. 513—514. P. 97—108.

5. Lapovok R., Tomus D., Barnett M.R., Gibson M.A. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling // Int. J. Mater. Res. 2009. Vol. 100. No. 12. P. 1727—1738.

6. Мюллер В., Блэкледж Д., Либовиц Дж. Гидриды металлов. М.: Атомиздат, 1973.

7. Nesterenko A.V., Novozhonov V.I., Zalazinskii A.G., Skripov A.V. Influence of temperature on compactibility of briquettes of titanium sponge alloyed with hydrogen // Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 287—292.

8. ABAQUS 6.10 Theory Manual 2010, Dassault Systemes Simulia Corp., Providence, RI, USA.

9. Chtourou H., Guillot M., Gakwaya A. Modeling of the metal powder compaction process using the cap model. Part I. Experimental material characterization and validation // Int. J. Solids Struct. 2002. Vol. 39. No. 4. P. 1059—1075.

10. Zhang B.S., Jain M., Zhao C.H., Bruhis M., Lawcock R., Ly K. Experimental calibration of density-dependent modified Drucker-Prager Cap model using an instrumented cubic die for powder compact // Powder Technol. 2010. Vol. 204. No. 1. P. 27—41.

11. Shang C., Sinka I.C., Pan J. Constitutive Model Calibration for Powder Compaction Using Instrumented Die Testing // Exper. Mech. 2012. Vol. 52. No. 7. P. 903—916.

12. Garner S., Strong J., Zavaliangos A. The extrapolation of the Drucker-Prager/Cap material parameters to low and high relative densities // Powder Technol. 2015. Vol. 283. P. 210—226.

13. Hernandez J.A., Oliver J., Cante J.C., Weyler R. Numerical modeling of crack formation in powder forming processes // Int. J. Solids Struct. 2011. Vol. 48. No. 2. P. 292—316.

14. Jonsen P., Haggblat H.A., Sommer K. Tensile strength and fracture energy of pressed metal powder by diametral compression test // Powder Technol. 2007. Vol. 176. No. 2-3. P. 148—155.

15. Procopio A.P., Zavaliangos A., Cunningham J.C. Analysis of the diametrical compression test and the applicability to plastically deforming materials // J. Mater. Sci. 2003. Vol. 38. No. 17. P. 3629—3639.

16. Han L.H., Elliot J.A., Bentham A.C., Mills A., Amidon G.E., Hancock B.C. A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders // Int. J. Solids Struct. 2008. Vol. 45. No.10. P. 3088—3106.

17. Рыбин Ю.И., Рудской А.И., Золотов А.М. Математическое моделирование и проектирование технологических процессов обработки металлов давлением. СПб.: Наука, 2004.

18. Залазинский А.Г. Пластическое деформирование структурно-неоднородных материалов. Екатеринбург: УрО РАН, 2000.

19. Полухин П.И., Гун Г.Я., Галкин А.М. Сопротивление пластической деформации металлов и сплавов. М.: Металлургия, 1983.

20. Аксенов Ю.А., Башкин И.О., Колмогоров В.Л., Понятовский Е.Г., Талуц Г.Г., Катая В.К., Левин И.В., Потапенко Ю.И., Трубин А.Н. Влияние водорода на пластичность и сопротивление деформации технического титана ВТ1-0 при температурах до 750 °C // ФММ. 1989. Т. 67. No. 5. С. 993—999.


Review

For citations:


Berezin I.M., Nesterenko A.V., Zalazinskii A.G. Identification of modified Drucker-Prager yield condition and modeling of plasticized titanium raw material compaction. . 2016;(2):22-29. (In Russ.) https://doi.org/10.17073/1997-308X-2016-2-22-29