Role of powder precursors in composite alloy production using liquid-phase methods
https://doi.org/10.17073/1997-308X-2016-2-47-58
Abstract
About the Authors
E. S. PrusovRussian Federation
Cand. Sci., Associate Professor of the Department of functional and constructional materials technology,
600000, Vladimir, Gorky str., 87
A. A. Panfilov
Russian Federation
Cand. Sci., Professor of the Department of functional and constructional materials technology
V. A. Kechin
Russian Federation
Dr. Sci. (Tech.), Prof., Head of the Department of functional and constructional materials technology
References
1. Miracle D.B. Metal Matrix Composites — From Science to Technological Significance. Composit. Sci. Technol. 2005. Vol. 65. P. 2526—2540.
2. Surappa M.K. Aluminium Matrix Composites: Challenges and Opportunities. Sadhana. 2003. Vol. 28. No. 1-2. P. 319—334.
3. Pramila Bai B.N., Ramasesh B.S., Surappa M.K. Dry Sliding Wear of A356—A1—SiC Composites. Wear. 1992. Vol. 157. No. 2. P. 295—304.
4. Chernyshova T.A., Kobeleva L.I., Shebo P., Panfilov A.V. Vzaimodejstvie metallicheskih rasplavov s armirujushhimi napolniteljami [Interaction of metal melts with reinforcements]. Moscow: Nauka, 1993.
5. Prusov E.S., Panfilov A.A., Kechin V.A., Gavrilin I.V. Perspektivy primenenija aljumomatrichnyh kompozicionnyh splavov v mashinostroenii [Perspectives of application of aluminum matrix composite alloys in engineering industry]. Litejshhik Rossii. 2012. No. 9. P. 16—19.
6. Hashim J., Looney L., Hashmi M.S.J. Metal Matrix Composites: Production by the Stir Casting Method. J. Mater. Process. Technol. 1999. Vol. 92-93. P. 1—7.
7. Poovazhagan L., Kalaichelvan K., Balaji V.R., Ganesh P., Avudaiappan A.K. Development of AA6061/SiCp Metal Matrix Composites by Conventional Stir Casting and Ultrasonic Assisted Casting Routes — A Comparative Study. Adv. Mater. Res. 2014. Vol. 984-985. P. 384—389.
8. Borisov V.G. Development of Process for Plasma Synthesis of Composite Aluminum Alloys. Metallurgist. 2008. Vol. 52. Iss. 11-12. P. 677—683.
9. Belousov N.N. Lit’e s kristallizaciej pod davleniem kompozitov na aljuminievoj osnove [Casting of composites on aluminum base with crystallization under pressure]. Litejnoe proizvodstvo. 1992. No. 6. P. 14—16.
10. Li P.J., Kandalova E.G., Nikitin V.I. In Situ Synthesis of Al/TiC in Aluminum Melt. Mater. Lett. 2005. Vol. 59. P. 2545—2548.
11. Panfilov A.V., Prusov E.S. O poluchenii i svojstvah kompleksno-armirovannyh kompozicionnyh materialov s aljuminievoj matricej [Producing and properties of complex reinforced aluminum matrix composite materials]. Litejnoe proizvodstvo. 2008. No. 8. P. 2—6.
12. Luts A.R., Makarenko A.G. Samorasprostranjajushhijsja vysokotemperaturnyj sintez aljuminievyh splavov [Selfpropagating high-temperature synthesis of aluminum alloys]. Samara: SamGTU, 2008.
13. Nikitin K.V., Nikitin V.I., Amosov A.P. Litye Al-kompozity, armirovannye i modificirovannye nanorazmernymi nemetallicheskimi chasticami [Cast aluminum composites reinforced and modified with nanosized nonmetallic particles]. Metallurgija mashinostroenija. 2013. No. 4. P. 35—40.
14. Song M.S., Zhang M.X., Zhang S.G., Huang B., Li J.G. In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting. Mater. Sci. Eng. A. 2008. Vol. 473. Iss. 1-2. P. 166—171.
15. Panfilov A.V., Panfilov A.A., Chernyshova T.A., Kobeleva L.I., Bolotova L.K. Formirovanie struktury i svoistv novykh kombinirovannykh alyumomatrichnykh kompozitsionnykh materialov, poluchennykh s ispol’zovaniem «in-situ» protsessa [Formation of structure and properties of combined aluminum matrix composite materials produced with use of «in-situ» process]. Protsessy lit’ya. 2004. No. 4. P. 23—26.
16. Varma A., Rogachev A.S., Mukasyan A.S., Hwang S. Combustion Synthesis of Advanced Materials: Principles and Applications. Adv. Chem. Eng. 1998. Vol. 24. P. 79—226.
17. Pogozhev Yu.S., Levashov E.A., Kudryashov A.E., Zamulaeva E.I., Novikov A.V., Potanin A.Yu. Kompozitsionnye SVS-materialy na osnove karbida i nikelida titana, legirovannye tugoplavkim nanokomponentom [Composite SHS-materials based on titanium carbide and nickelide alloyed with high-melting nanocomponent] // Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2012. No. 2. P. 24—32.
18. Moskovskikh D.O., Mukas’yan A.S., Rogachev A.S. Samorasprostranyayushchiisya vysokotemperaturnyi sintez nanoporoshkov karbida kremniya [Self-propagating high-temperature synthesis of silicon carbide nanopowders]. Doklady Akademii nauk. 2013. Vol. 449. No. 2. P. 111—117.
19. Su X., Fu F., Yan Y. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nature Communications. 2014. Vol. 5. No. 4908. Р. 1—7.
20. Merzhanov A.G., Borovinskaya I.P. Samorasprostranyayushchiisya vysokotemperaturnyi sintez neorganicheskikh soedinenii [Self-propagating high-temperature synthesis of inorganic compounds]. Doklady Akademii nauk SSSR. 1972. Vol. 204. No. 2. P. 366—369.
21. Wiley J.B., Kaner R.B. Rapid Solid-State Precursor Synthesis of Materials. Science. 1992. Vol. 255. P. 1093—1097.
22. Moore J.J., Feng H.J. Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters. Progr. Mater. Sci. 1995. Vol. 39. P. 243—273.
23. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Advanced materials and technologies of self-propagating high-temperature synthesis]. Moscow: MISIS, 2011.
24. Luts A.R., Amosov A.P., Ermoshkin And.A., Ermoshkin Ant.A., Nikitin K.V., Timoshkin I.Yu. Self-propagating high-temperature synthesis of highly dispersed titanium-carbide phase from powder mixtures in the aluminum melt. Russ. J. Non-Ferr. Met. 2014. Vol. 55. Iss. 6. P. 606—612.
25. Liu Z., Wang X., Han Q., Li J. Synthesis of submicrometer-sized TiC particles in aluminum melt at low melting temperature. J. Mater. Res. 2014. Vol. 29. Iss. 7. P. 896—901.
26. Petrunin A.V., Panfilov A.V., Panfilov A.A. O vliyanii modifitsirovaniya nanorazmernymi tugoplavkimi chastitsami na strukturu i svoistva alyumomatrichnykh kompozitov [Influence of modification with nanosized hard-melting particles on structure and properties of aluminum matrix composites]. Liteinoe proizvodstvo. 2009. No. 10. P. 17—20.
27. Amosov A.P., Titova Yu.V., Maidan D.A., Ermoshkin A.A., Timoshkin I.Yu. Application of the Nanopowder Production of Azide SHS Technology for the Reinforcement and Modification of Aluminum Alloys. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 2. P. 222—228.
28. Tjong S.C., Ma Z.Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R. 2000. Vol. 29. P. 49—113.
29. Ma Z.Y., Li J.H., Li S.X., Ning X.G., Lu Y.X., Bi J. Property-microstructure correlation in in-situ formed Al2O3, TiB2 and Al3Ti mixture-reinforced aluminum composites. J. Mater. Sci. 1996. Vol. 31. P. 741—747.
30. Feng C.F., Froyen L. On the reaction mechanism of an Al—TiO2—B system for producing in-situ (Al2O3 + TiB2)/ Al composites. Scripta Mater. 1998. Vol. 39. No. 1. P. 109—118.
31. Chen Z.C., Takeda T., Ikeda K. Microstructural evolution of reactive-sintered aluminum matrix composites. Composit. Sci. Technol. 2008. Vol. 68. P. 2245—2253.
32. Prusov E.S. Modern Methods of Metal Matrix Composite Alloys Production and New Approaches to Realization of Reinforcing Scheme. Machines, Technol., Mater. 2014. Iss.1. P. 11—13.
33. Prusov E.S., Panfilov A.A., Kechin V.A. Litoj kompozicionnyj splav i sposob ego poluchenija [Cast composite alloy and method of its production]: Pat. 2492261 (RF). Fill. 28.12.2011. Pat. 10.09.2013. Bul. No. 25.
34. Reddy B.S.B., Das K., Das S. A Review on the Synthesis of In Situ Aluminum Based Composites by Thermal, Mechanical and Mechanical-Thermal Activation of Chemical Reactions. J. Mater. Sci. 2007. Vol. 42. No. 22. P. 9366—9378.
35. Suryanarayana C. Mechanical Alloying and Milling. Progr. Mater. Sci. 2001. Vol. 46. No. 1-2. P. 1—184.
36. Prusov E.S., Panfilov A.A. Issledovanie svojstv lityh kompozicionnyh splavov na osnove aljuminija, armirovannyh jendogennymi i jekzogennymi fazami [Investigation of properties of cast composite alloys reinforced with endogenous and exogenous phases]. Metally. 2011. No. 4. С. 79—84.
37. Yarandi F.M., Rohatgi P.K., Ray S. Fluidity and Microstructure Formation During Flow of Al—SiC Particle Composites. JMEPEG. 1993. Vol. 2. P. 359—364.
Review
For citations:
Prusov E.S., Panfilov A.A., Kechin V.A. Role of powder precursors in composite alloy production using liquid-phase methods. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(2):47-58. (In Russ.) https://doi.org/10.17073/1997-308X-2016-2-47-58