Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

STRUCTURE AND PROPERTIES OF DYSPROSIUM TITANATE POWDER PRODUCED BY THE MECHANOCHEMICAL METHOD

https://doi.org/10.17073/1997-308X-2017-1-11-19

Abstract

The paper studies the structure and basic physical and chemical properties of titanate dysprosium powders produced by mechanochemical synthesis from the low-temperature modification of titanium oxide and modification of dysprosium oxide using X-ray diffraction methods (XRD), scanning electron microscopy, Raman spectroscopy (Raman spectra), transmission electron microscopy, and chemical analyz. Based on XRD it was found that complete conversion of initial oxides into X-ray amorphous dysprosium titanate (Dy2TiO5) occurs during mechanical treatment of the mixture for 30–60 min. Microelectron-diffraction pattern of Dy2TiO5 powders produced by mechanical synthesis has a ring-shaped structure with a certain amount of crystalline phase inclusions, which is typical for an X-ray amorphous phase. Dysprosium titanate powder produced by the induction melting method has a regular cubical lattice with a parameter 3,4 Å.

 

 

About the Authors

Zh. V. Eremeeva
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), associate prof., Department of powder metallurgy and functional coatings (PM&FC)



V. S. Panov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof., Department of PM&FC, NUST «MISIS»



L. V. Myakisheva
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), Department of nonferrous metals and gold, NUST «MISIS»



A. V. Lizunov
OJSC «ELEMASH»
Russian Federation

engineer of research laboratory of OJSC «ELEMASH» 



A. A. Nepapushev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

engineer of the scientific research centre «Structural ceramic nanomaterials», NUST «MISIS»



D. A. Sidorenko
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), research scientist of scientific-educational centre SHS MISIS–ISMAN



A. V. Pavlik
National University of Science and Technology (NUST) «MISIS»
Russian Federation

postgraduate student, Department of PM&FC, NUST «MISIS»



E. V. Apostolova
National University of Science and Technology (NUST) «MISIS»
Russian Federation

postgraduate student, Department of PM&FC, NUST «MISIS»



References

1. Sickafus K.E., Grimes R.W., Valdez J.A., Cleave A., Ming Tang, Ishimaru Manabu, Corish Siobhan M., Stanek Ch.R., Uberuaga B.P. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nature Mater. 2007. No. 6. P. 217—223.

2. Risovanny V.D., Varlashova E.E., Fridman S.R., Ponomarenko V.B., Shcheglov A.V. Sravnitelnye kharakteristiki pogloshchayushchikh klasternykh sborok VVER-1000 i PWR [Comparative characteristics of absorbing cluster assemblies of VVER-1000 and PWR]. Atomnaya energiya. 1998. Vol. 84. No. 6. P. 508—513.

3. Belash N.N., Kushtym A.V., Tatarinov V.R., Chernov I.A. Analiz razrabotok konstruktsyi i materialov PELov PS SUZ povyshennoi rabotosposobnosti [Analysis of the development of structures and materials absorbing elements CPS increased efficiency]. Yadernye i radiatsionnye tekhnologii. 2007. Vol. 7. No. 3—4. Р. 18—28.

4. Risovanny V.D., Zakharov A.V., Muraleva E.M. Novye per-spektivnye pogloshchayushchie materialy dlya yadernykh reaktorov na teplovykh neitronakh [New advanced absorbent materials for nuclear reactors on thermal neutrons]. Voprosy atomnoi nauki i tekhniki. Seriya: Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie. 2005. No. 3. Р. 87—93.

5. Risovanny V.D., Zakharov A.V., Muraleva E.M., Kosenkov V.M., Latypov R.N. Dysprozium hafnate as absorbing material for control rods. J. Nucl. Mater. 2006. Vol. 355. P. 163—170.

6. Fridman S.R., Risovanny V.D., Zakharov A.V., Toporova V.G. Radiation stability of WWER-1000 CPS AR absorber element with boron carbide. Voprosy atomnoi nauki i tekhniki. Ser. Physics of radiation damages and radiation science of materials. 2001. No. 2. P. 84—90.

7. Perova E.B., Spiridonov L.N., Komisarova L.N. Fazovye ravnovesiya v sisteme HfO2—Dy2O3 [Phase equilibria in HfO2—Dy2O3 system]. Izvestiya AN SSSR. Neorganicheskie materialy. 1982. Vol. 8. No. 10. Р. 1878—1882.

8. Makhmudov F.A., Shaimardanov E.N., Kabgov Kh.B. Poluchenie i svoistva nanostrukturirovannykh oksidov disproziya [Preparation and properties of nanostructured oxides of dysprosium]. Doklady AN Respubliki Tadzhikistan. 2013. Vol. 56. Iss. 2. P. 130—134.

9. Sinha A., Sharma B.P. Development of dysprosium titanate based ceramics. J. Amer. Ceram. Soc. 2005. No. 2. P. 238—241.

10. Khalameida S.V. Nekotorye novye podkhody pri mekhanokhimicheskom sinteze nanodispersnogo titanata bariya [Some new approaches to mechanochemical synthesis nanodispersnogo barium titanate]. Nanosistemy, nanomaterialy, nanotechnologii (Ukraine). 2009. Vol. 7. Nо. 3. P. 911—918.

11. Xue J., Wang J., Wan D. Nanosized barium titanate powder by mechanical activation. J. Amer. Ceram. Soc. 2000. Vol. 83. No. 1. P. 232—234.

12. Lyashenko L.P., Shcherbakova L.G., Kolbanev I.V., Kne-rel’man E.I., Davydova G.I. Mechanism of structure for-mationin samarium and holmium titanates prepared from mechanically activated oxides. Inorg. Mater. 2007. Vol. 43. No. 1. P. 46—54.

13. Szafraniak-Wiza I., Hilczer B., Talik E., Pietraszko A., Ma-lic B. Ferroelectric perovskite nanopowders obtained by mechanochemical synthesis. Process. Appl. Ceram. 2010. Vol. 4. No. 3. P. 99—106.

14. Anokhin A.S., Lyanguzov N.V., Roshal’ S.B., Yuzyuk Yu.I., Wen Wang. Spektry kombinatsionnogo rasseyaniya polikristallicheskikh nanotrubok titanata vismuta [Raman spectra of polycrystalline bismuth titanate nanotubes]. Fizika tvyordogo tela. 2011. Vol. 53. Iss. 9. P. 1968—1772.

15. Sindo D., Oikava T. Analiticheskaya prosvechivayushchaya elektronnaya mikroskopiya [Analytical transmission electron microscopy]. Moscow: Tekhnosfera, 2004.

16. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovaniya i kontrolya [Microstructure of materials. Methods of a research and control]. Moscow: Tekhnosfera, 2004.

17. Sidorova O.V., Aleshina L.A., Kalinkin A.M. Vliyanie me-khanoaktivatsii na strukturnoe sostoyanie titanata strontsiya [Effect of mechanical activation on the structural condition of strontium titanate]. Fundamental’nye issledovaniya. 2014. No. 12—2. P. 280—288. URL: http://www. fundamental-research.ru/ru/article/view?id=36218 (accessed: 05.17. 2016).


Review

For citations:


Eremeeva Zh.V., Panov V.S., Myakisheva L.V., Lizunov A.V., Nepapushev A.A., Sidorenko D.A., Pavlik A.V., Apostolova E.V. STRUCTURE AND PROPERTIES OF DYSPROSIUM TITANATE POWDER PRODUCED BY THE MECHANOCHEMICAL METHOD. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(1):11-19. (In Russ.) https://doi.org/10.17073/1997-308X-2017-1-11-19

Views: 1776


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)