Investigation into Compacting the Nanopowders and Micropowders of Tungsten Carbide in a High-Pressure Apparatus
https://doi.org/10.17073/1997-308X-2015-2-15-20
Abstract
The results of the investigation into compacting (sintering) in high-pressure apparatus of the DO-138 model of nanopowders and micropowders of silicon carbide are presented. Compacting modes for both types of materials were identical (pressure of 3.5–4.0 GPa, temperature of 1600–1700 °C, and holding time of 10 s). The influence of cladding the SiC nanopowders and micropowders with titanium and titanium nitride on the properties of compacts (cakes) fabricated in the same sintering modes is also considered. It is established that when compacting the silicon carbide nanopowder, the formed cakes differ by the higher density, hardness, and lower porosity compared with the samples of finely dispersed silicon carbide of technical grade. High activity of titanium with respect to SiC allows one to bond chemically the grains of the latter due to the formation of intermediate layers of titanium compounds between them. This is resulted in that the formed ceramics possesses high density, hardness, and wear resistance. Wear resistance of synthesized composites based on nano-SiC is higher by a factor of 4.5 than that one of polycrystalline material made of silicon carbide micropowder.
About the Authors
A. P. GarshinRussian Federation
dokt. tekhn. nauk, prof., st. nauch. sotrudnik kafedry matematiki i estestvenno-nauchnykh distsiplin SPbGPU (195251, g. Sankt-Peterburg, ul. Politekhnicheskaya, 29).
S. P. Bogdanov
Russian Federation
kand. tekhn. nauk, dotsent kafedry teoreticheskikh osnov materialovedeniya SPbGTI(TU) (119013, g. Sankt-Peterburg, Moskovskii pr-t, 26)
V. A. Ponomarenko
Russian Federation
kand. tekhn. nauk, zam. glavnogo tekhnologa OOO «VIRIAL» (194156, g. Sankt-Peterburg, pr-t Engel'sa, 27)
References
1. Xie Y., Llewellyn R.J., Stiles D. // Wear. 2001. Vol. 250. Р. 88—99.
2. Злобин С.Б., Батраев И.А., Ульяницкий В.Ю., Штерцер А.А. // Упрочняющие технологии и покрытия. 2012. № 5. С. 20—24.
3. Лахоткин Ю.В., Кузьмин В.П., Душик В.В., Рыбкина Т.В. // Упрочняющие технологии и покрытия. 2013. № 6. С. 9—15.
4. Наноструктурные покрытия / Под ред. А. Кавалейро, Д. де Хоссона М.: Техносфера, 2011.
5. Lusk D., Gore M., Boardman W. et al. // Diamond and Related Mater. 2008. Vol. 17. Р. 1613—1621.
6. Casserly T., Boinapally K., Oppus M. et al. / Investigation of DLC-Si Film Deposited Inside a 304SS Pipe Using a Novel Hollow Cathode Plasma Immersion Ion Processing Method // Proceedings of the Society of Vacuum Coaters: 50-th Annual Technical Conf. Proceedings ( April 28—May 3, 2007). Louisville, KY, 2007. Р. 59—62.
7. URL: https://www.researchgate.net/publication/237296854_A_Novel_Corrosion_and_Abrasion_Resistant_Internal_Coating_Method_with_Improved_Adhesion_Using_Hollow_Cathode_PECVD_Technology. (Дата обращения 15.05.015).
8. Wei R. Plasma Surface Engineering Research at SwRI and its Practical Applications for Extreme Environments // http://www.meeting.edu.cn/meeting/webmedia/jingpin/icse2011/pic/abstract.pdf. (Дата обращения 18.05.15).
9. Wei R., Rincon C., Coulter K.E., Miller M. // URL: http://www.swri.org/3pubs/ttoday/Winter11/PDFs/ImprovingSurfaceProperties.pdf. (Дата обращения 08.05.15).
10. Fundis M., Knoch H. Diamond-like carbon coatings — tribological possibilities and limitations in applications on sintered silicon carbide bearing and seal face // Proc. 14-th Inter. Pump Users Symp. (September 24—27, 2012). Houston, Texas, 1997. С. 93—98.
11. Xiang Yu, Yang Liu, Lei Ma et al. // Vacuum. 2013. Vol. 94. Р. 53—56.
12. Robertson J. // Mater. Sci. Eng. 2002. Vol. 37. Р. 129—281.
13. Де Хоссон Д.Т.М., Карвальо Н.Д.М., Пей Ю., Гальван Д. // Наноструктурные покрытия / Под ред. А. Кавалейро, Д. де Хоссона. М.: Техносфера, 2011. С. 182—263.
14. Kouya Oohira. Characteristics and Applications of DLC // URL: http://www.ntn.co.jp/english/products/review/pdf/NTN_TR77_en_p090_095.pdf. (Дата обращения 08.05.15).
15. Chi-Lung Chang, Da-Yung Wang // Diamond and Related Mater. 2001. Vol. 10. Р. 1528—1534.
16. Podgursky V., Torp B., Traksmaa R. et al. // Mater. Sci. (Medziagotyra). 2005. Vol. 11, № 4. Р. 352—355.
17. Forsich C., Heim D., Dipolt C., Müller T. et al. // Surface Coat. Technol. 2012. Vol. 241, № 1. P. 86—92.
18. Birney R., Placido F. Modified Diamond-Like Carbon Multilayer Coatings on Metallic Substrates Produced by Pulsed-DC Hollow Cathode PECVD // Proceedings of the Society of Vacuum Coaters: 55-th Annual Technical Conference Proceedings (April 28—May 3, 2012 ). Santa Clara, CA, P. 586—592.
19. Joost Vlassak. Thin Film Mechanics // URL: http://www.mrsec.harvard.edu/education/ap298r2004/Vlassak%20AP298presentation.pdf. (Дата обращения 15.05.15).
20. Ferrari A.C., Rodil S.E., Robertson J., Milne W.I. // Diamond and Related Mater. 2002. Vol. 11. Р. 994—999.
21. Ferrari A.C., Kleinsorge B., Morrison N.A. et al. // J. Appl. Phys. 1999. Vol. 85, № 10. Р. 7191—7197.
22. Овидько И.А. Наноструктурные покрытия / Под ред. А. Кавалейро, Д. де Хоссона. М.: Техносфера, 2011. С. 108—140.
23. Polok-Rubiniec M., Dobrzański L.A., Adamiak M. // J. Achievements in Mater. and Manufact. Eng. 2007. Vol. 20, № 1-2. Р. 279—282.
24. Benkahoul M., Robin P., Martinu L., Klemberg-Sapieha J.E. // Surface Coat. Technol. 2009. Vol. 203. Р. 934—940.
25. Bemporad E., Sebastiani M., Casadei F., Carassiti F. // Surface Coat. Technol. 2007. Vol. 201. Р. 7652—7662.
26. Forsich C., Heim D., Mueller T. // Surface Coat. Technol. 2008. Vol. 203. Р. 521—525.
27. Silva W.M., Trava-Airoldi V.J., Chung Y.W. // Surface Coat. Technol. 2011. Vol. 205. Р. 3703—3707.
28. Tsugawa K., Kawaki S., Ishihara M., Hasegaway M. // Jap. J. Appl. Phys. 2012. Vol. 51. Р. 090122 1—6.
29. Pang X., Volinsky A.A., Gao K. Water Effects on Adhesion and Wear Resistance of Chromium Oxide Coatings // URL: http://eng.usf.edu/~volinsky/PangNACE08.pdf. (Дата обращения 15.05.15).
30. Volinsky A.A., Waters P. Novel adhesion test for environmentally assisted fracture in thin films // URL: http://www.dtic.mil/dtic/tr/fulltext/u2/a456175.pdf. (Дата обращения 15.05.15).
31. Drees D., Celis J.-P. Tribocorrosion – Combined effects of wear and corrosion in aqueous environments // URL: http://www.irg-woem.org/pdfs/15.pdf. (Дата обращения 15.05.15).
32. Jin Woo Yi, Se Jun Park, Myoung-Woon Moon et al. // Appl. Surface Sci. 2009. Vol. 255. Р. 7005—7011.
33. Ronkainen H., Varjus S., Holmberg K. // Wear. 2001. Vol. 249. Р. 267—271.
34. Haque T., Ertas D., Ozekcin A. et al. // Wear. 2013. Vol. 302, № 1—2. Р. 882—889.
35. Luca Nobili, Luca Magagnin // Trans. Nonferrous Metal. Soc. China. 2009. Vol. 19. Р. 810—813.
36. Wu X., Ohana T., Nakamura T., Tanaka A. // Wear. 2010. Vol. 268, № 1—2. Р. 290—334.
37. Pang X., Yang H., Gao K. et al. // Thin Solid Films. 2011. Vol. 519. Р. 5353—5357.
38. Pang X., Yang H., Shi S. et al. // J. Mater. Res. 2010. Vol. 25, № 11. P. 2159—2165.
39. Zhang S., Lam Bui X., Fu Y. et al. // Diamond and Related Mater. 2004. Vol. 13. Р. 867—871.
40. Zhi-qiang Fu, Cheng-biao Wang, Wei Zhang et al. // Mater. Design. 2013. Vol. 51. Р. 775—779.
41. Wen Yue, Song Wang, Zhiqiang Fu et al. // Surface Coatings Technol. 2013. Vol. 218. Р. 47—56.
Review
For citations:
Garshin A.P., Bogdanov S.P., Ponomarenko V.A. Investigation into Compacting the Nanopowders and Micropowders of Tungsten Carbide in a High-Pressure Apparatus. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2015;(2):15-20. (In Russ.) https://doi.org/10.17073/1997-308X-2015-2-15-20