The role of bulk and mass effects of reactions in reaction sintering processes
https://doi.org/10.17073/1997-308X-2015-4-9-20
Abstract
Peculiarities of fabrication of ceramic porous and dense composite materials based on compounds of the Si–C–O–N system with the participation of chemical reactions and formation of new phases are discussed. An attempt to analyze the relatively new technologies in terms developed in earlier works on reaction sintering of silicon nitride, carbide, and oxynitride is undertaken. It is shown that the approach to reaction sintering, which includes the selection of promising reaction systems allowing for bulk effect of reactions occurring in the course of material fabrication can be extended to the case of obtaining porous and highly porous materials. In contrast to the case of fabrication of reaction dense materials, where systems with positive bulk effects are used, the reaction systems with negative bulk effects can be used when fabricating highly porous materials.
About the Authors
V. N. AntsiferovRussian Federation
Dr. Sci. (Tech.), prof., acad. of the Russian Academy of Sciences, Director of Research Centre Powder Materials Science of Perm National Research Polytechnic University (PNRPU) (614990, Russia, Perm, Komsomolsky pr., 29)
V. G. Gilev
Russian Federation
Cand. Sci. (Tech.), senior researcher, Research Centre of Powder Materials Science (Powder Metallurgy Department), PNRPU
References
1. Andrievskii R.A., Spivak I.I. Nitrid kremniya i materialy na ego osnove [Silicon nitride based materials]. Moscow: Metallurgiya, 1984.
2. Gnesin G.G. Karbidokremnievye materially [Silicon carbide materials]. Moscow: Metallurgiya, 1977.
3. Guzman I.Ya. Issledovaniya v oblasti reaktsionnogo spekaniya keramiki na osnove soedinenii kremniya v sisteme Si—C—O—N [Studies on the reaction sintering of eramics based on silicon compounds in the Si—C—O—N system]: Abstract of the dissertation of D. Sci. Moscow: MKhTI, 1979.
4. Shimanskii A.F. Fizikokhimiya kompozitsionnykh i keramicheskikh materialov. Lektsiya 13. Reaktsionnoe spekanie [Physical chemistry of composite and ceramic materials. Lecture 13. The reaction sintering]. URL: http://www.twirpx.com/file/736480/ (accessed: 22.09.2015).
5. Gilev V.G. Reaction sintering with negative volume changes. Inorgan. Mater. 2002. Vol. 38. No. 3. P. 296—301.
6. Antsiferov V.N., Gilev V.G. Membrane porous materials from sialon. Refract. Industr. Ceram. 2001. Vol. 42. No. 1—2. P. 57—63.
7. Gilev V.G. Synthesis of micro- and nanoporous materials from silicon carbide in ultradisperse reaction systems. Russ. J. Appl. Chem. 2004. Vol. 77. No. 4. P. 531—537.
8. Suh M.H., Kwon W.-T., Kim E.B., Kim S.-R., Bae S.Y., Choi D.J., Kim Y. H2 permeable nanoporous SiC membrane for an IGCC application. J. Ceram. Process. Res. 2009. Vol. 10. No. 3. P. 359—363.
9. Zhao H., Liu Z., Yang Y., Liu X., Zhang K., Li Z. Preparation and properties of porous silicon carbide ceramics through сoat-mix and composite additives process. Trans. Nonferr. Met. Soc. China. 2011. Vol. 21. No. 6. P. 1329–1334.
10. Yang H., Zhao H., Li Z., Zhang K., Liu X., Tang C. Microstructure evolution process of porous silicon carbide ceramics prepared through coat-mix method. Ceram. Int. Vol. 38. No. 4. P. 2213—2218.
11. Zhu S., Ding S., Xi H., Ruoding Wang R. Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater. Lett. 2005. Vol. 59. No. 5. P. 595—597.
12. Zhu S., Hong-An Xi, Li Q., Wang R. In situ growth of β-SiC nanowires in porous SiC ceramics. J. Amer. Ceram. Soc. 2005. Vol. 88. No. 9. P. 2619—2621.
13. Zhu S., Ding S., Xi H., Li Q., Wang R. Preparation and characterization of SiC/cordierite composite porous ceramics. Ceram. Int. 2007. Vol. 3. No. 1. P. 115—118.
14. Shan S.-Y., Yang J.-F., Gao J.-Q. Porous silicon nitride ceramics prepared by reduction—nitridation of silica. J. Amer. Ceram. Soc. 2005. Vol. 88. No. 9. P. 2594—2596.
15. Lu Y., Yang J., Lu W., Liu R., Qiao G., Bao C. Porous silicon nitride ceramics fabricated by carbothermal reduction-reaction bonding. Mater. Manuf. Processes. 2011. Vol. 26. No. 6. P. 855—861.
16. Diaz A., Hampshire S., Yang J.-F., Ohji T., Kanzaki S. Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes. J. Amer. Ceram. Soc. 2005. Vol. 88. No. 3. P. 698—706.
17. Dechang Jia, Yingfeng Shao, Boyang Liu, Yu Zhou. Characterization of porous silicon nitride/silicon oxynitride composite ceramics produced by sol infiltration. Mater. Chem. Phys. 2010. Vol. 124. No. 1. P. 97—101.
18. Jiang G.-P., Yang J.-F., Gao J.-Q. Extrusion of porous silicon nitride using different binders. J. Ceram. Process. Res. 2010. Vol. 11. No. 1. Р. 126—128.
19. Karunaratne B.S.B., Kim H.-D. Fabrication of low cost shirinkage-free porous sialon ceramics. J. Ceram. Process. Res. 2009. Vol. 10. No. 5. Р. 581—588.
20. Xu X., Fu R., Chen K., Ferreira J.M.F. Cost-effective fabrication of porous α-SiAlON bonded β-SiAlON ceramics. Mater. Lett. 2005. Vol. 59. No. 19—20. P. 2601—2604.
21. Yue J., Dong B., He E., Wang H. Porous β-SiAlON ceramic with closed packed macropore. Mater. Manuf. Processes. 2011. Vol. 26. No. 9. P. 1229—1232.
22. Shvedkov E.L., Denisenko E.T., Kovenskii I.I. Slovar’-spravochnik po poroshkovoi metallurgii [Dictionary reference for powder metallurgy]. Kiev: Naukova dumka, 1982. 23. Gordeev S.K. Trekhmernye uglerodnye nanomaterialy [Three-dimensional carbon nanomaterials]. Voprosy materialovedeniya. 2008. No. 2. P. 163—174.
23. Geguzin Ya.I. Fizika spekaniya [Physics of sintering]. Moscow: Nauka, 1984.
24. Guzman I.Ya., Litvin Yu.N., Putrya E.V. Kinetika okisleniya keramiki iz nitrida i oksinitrida kremniya [The kinetics of the oxidation of silicon nitride and silicon oxynitride ceramics]. Ogneupory. 1974. No. 2. P. 47—52.
25. Роrz F., Тhummler F. Oxidation mechanism of porous silicon nitride. J. Mater. Sci. 1984. Vol. 19. No. 4. Р. 1283—1285.
26. Аndriеvskii R.А. Nanocrystalline high melting point compound-based materials. J. Mater. Sci. 1994. Vol. 29. Р. 614—631.
27. Antsiferov V.N., Gilev V.G., Rabinovich A.I. Tribotekhnicheskie svoistva kompozitsionnykh materialov Al—SiC i Al—SiC—MnS, poluchennykh infil’tratsiei preform na osnove nanoporistoi keramiki [Tribological properties of composite material Al—SiC and Al—SiC—MnS received by infiltration of preforms based on nanoporous ceramics]. Ogneupory i tekhnicheskaya keramika. 2005. No. 3. P. 2—6.
28. Ciora R.J., Fayyaz B., Liu P.K.T., Suwanmethanond V., Mallada R., Sahimi M., Tsotsis T.T. Preparation and reactive applications of nanoporous silicon carbide membranes. Chem. Eng. Sci. 2004. Vol. 59. No. 22—23. P. 4957—4965.
29. Gordeev S.K., Zhukov S.G., Danchukova L.V., Ekstrem T.S. Osobennosti polucheniya kompozitsionnykh materialov na osnove almaza, karbida kremniya i kremniya pri nizkikh davleniyakh [Features of producing composite materials based on diamond, silicon carbide and silicon at low pressures]. Neorganicheskie materialy. 2001. Vol. 37. No. 6. P. 691—696.
30. Gordeev S.K., Zhukov S.G., Danchukova L.V. Novye vozmozhnosti primeneniya iznosostoikikh almaznykh kompozitsionnykh materialov [New applications of wear resistant diamond composite materials]. Instrumental’nyi cvit. 2003. Vol. 18. No. 2 (18). P. 4—6.
31. Ippolitov N.G. K voprosu nadezhnosti osevykh opor [On the question of the reliability of the axial bearings]. Neftegazovoe mashinostroenie. 2006. No. 12. P. 64.
32. Sheppard C.M., MacKenzie K.J.D., Barris G.C., Meinhold R.H. A new silicothermal route to the formation of X-phase sialon: the reaction sequence in the presence and absence of Y2O3. J. Europ. Ceram. Soc. 1997. Vol. 17. No. 5. P. 667—673.
33. Sheppard C.M., MacKenzie K.J.D., Ryan M.J. The physical properties of sintered X-phase sialon prepared by silicothermal reaction bonding. J. Europ. Ceram. Soc. 1998. Vol. 18. No. 3. P. 185—191.
34. Jamshidi A., Nourbakhsh A.A., Jafari M., Naghibi S. Combination of mechanical activation and silicothermal reduction and nitridation process to form X-sialon by using andalusite precursor. Mol. Cryst. Liq. Cryst. 2012. Vol. 555. No. 1. P. 112—120.
35. Rouquié Y., Jones M.I., Brown I.W., White G.V. Influence of nitrogen overpressure on the nitridation, densification and formation of β-SiAlONs produced by silicothermal reduction. J. Europ. Ceram. Soc. 2013. Vol. 33. No. 4. P. 859—867.
36. Antsiferov V.N., Gilev V.G. Reaktsionnoe spekanie netraditsionnykh sistem [Reaction sintering of non-traditional systems]. In: Fiziko-khimicheskie problemy sozdaniya novykh konstruktsionnykh keramicheskikh materialov. Syr’e, sintez, svoistva: IV Vseros. konf. Аbstrakts (Syktyvkar, 4—8 June 2001). Syktyvkar, 2002. P. 12—13. URL: http://chemi. komisc.ru/old/pdf/conf/conf1-2001-abs-content.pdf (accessed: 22.09.2015).
37. Gilev V.G. IR spectra and structure of Si—Al—O—N phases prepared by carbothermal reduction of kaolin in nitriding atmosphere. Inorg. Mater. 2001. Vol. 37. No. 10. P. 1041—1045.
38. Antsiferov V.N., Gilyov V.G., Karmanov V.I. IR-spectra and phases structure of sialons. Vibr. Spectrosc. 2002. Vol. 30. No. 2. P. 169—173.
39. Gilev V.G., Busovikova T.M., Loginov M.G. Poristye karbidokremnievye materialy, reaktsionno spechennye pri otritsatel’nykh ob”emnykh effektakh [Porous silicon carbide reaction sintered at negative volume effects]. Izv. vuzov. Tsvet. metallurgiya. 2003. No. 1. P. 58—64.
40. Gordeev S.K., Vartanova A.V. Izmenenie poristosti v protsesse polucheniya karbidnykh materialov i sozdaniya na ikh osnove kompaktnykh uglerodnykh adsorbentov [Porosity changes in the process of obtaining of carbide material and during of making of them carbon adsorbents]. Zhurnal prikladnoi khimii. 1994. Vol. 67. No. 7. P. 1080—1084.
41. Larsson P., Axйn N., Akdogan G., Ekstrцm T., Gordeev S. Wear of chromium carbide-copper composites with continuous phases. Tribol. Lett. 2004. Vol. 16. No. 1—2. P. 59—64.
42. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov: Ucheb. pos. [Powder technology SHS of materials. Textbook]. Ed. V.N. Antsiferov. Moscow: Mashinostroenie-1, 2007.
43. Andriyanov D.I., Amosov A.P., Samboruk A.R. Ispol’zovanie granulirovaniya v tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza dlya polucheniya poristogo karbida titana [Using the granulation SHS technology to produce porous titanium carbide]. Vestnik Samarskogo gos. tekhnicheskogo universiteta. Ser. Tekhnicheskie nauki. 2014. Vol. 43. No. 3 (43). P. 73—80.
44. Andriyanov D.I., Amosov A.P., Latukhin E.I., Samboruk A.R., Bairikov I.M., Shcherbovskikh A.E. Poluchenie biosovmestimykh poristykh materialov na osnove monoborida titana metodom SVS [Preparation of porous biocompatible materials based on mono titanium boride by SHS]. Vestnik Samarskogo gos. tekhnicheskogo universiteta. Ser. Tekhnicheskie nauki. 2011. No. 4 (32). P. 96—101.
45. Verezub O.N., Kбlazi Z., Buza G., Boross P., Vero B., Kaptay G. Surface metal matrix composite Fe—Ti—C/TiC layers produced by laser melt injection technology. Int. conf. «Advanced metallic materials» (Smolenice, Slovakia, 5—7 Nov. 2003). P. 297—300.
46. Gilev V.G., Morozov E.A. Lazernoe inzhektsionnoe legirovanie austenitnogo chuguna ЧН16Д7ГХ titanom [Laser injection doping titanium austenitic iron CHN16D7GH]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2015. No. 3. P. 44—52.
Review
For citations:
Antsiferov V.N., Gilev V.G. The role of bulk and mass effects of reactions in reaction sintering processes. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2015;(4):9-20. (In Russ.) https://doi.org/10.17073/1997-308X-2015-4-9-20