Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Peculiarities of formation of sintered electrodes of the Ti–Ti3P–CaO composition and their application in technology of pulsed electric-discharge machining of titanium

https://doi.org/10.17073/1997-308X-2015-4-10-25

Abstract

The influence of mechanical treatment on the structure and phase composition of Ti–10%Ca3(PO4)2 powder mixtures is investigated. The Ti–Ti3P–CaO ceramic electrode materials with a high uniformity of components and residual porosity of 5–7% are fabricated according to the pressing and vacuum sintering technology. The erosion ability of the Ti–Ti3P–CaO metal–ceramic electrode under the pulsed electric-discharge machining of titanium substrates is investigated and compared with the TiC0,5–Ti3POx–CaO electrodes fabricated by self-propagating high-temperature synthesis. Coatings fabricated when using Ti–Ti3P–CaO and TiC0,5–Ti3POx–CaO electrodes are characterized by high continuity, thickness up to 20 μm, microhardness up to 3,6 GPa, roughness to 3,3–4,6 μm, and the presence and uniform distribution of calcium and phosphorus bioactive elements.

About the Authors

P. A. Loginov
Национальный исследовательский технологический университет «МИСиС», г. Москва
Russian Federation

Ph. D., junior research scientist of Scientific-educational centre SHS MISIS–ISMAN (119049, Russia, Moscow, Leninsky pr., 4). Tel.: (499) 237-53-36



E. A. Levashov
Национальный исследовательский технологический университет «МИСиС», г. Москва
Russian Federation

Dr. Sci. (Tech.), prof., acad. of RANS, head of Department of powder metallurgy and functional coatings MISIS, director of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (495) 638-45-00



A. Yu. Potanin
Национальный исследовательский технологический университет «МИСиС», г. Москва
Russian Federation
Ph. D., junior research scientist of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (499) 237-53-36


A. E. Kudryashov
Национальный исследовательский технологический университет «МИСиС», г. Москва
Russian Federation
Ph. D., leading research scientist of Scientific-educational centre SHS MISIS–ISMAN. Tel./fax: (495) 955-00-26


O. S. Manakova
Национальный исследовательский технологический университет «МИСиС», г. Москва
Russian Federation
engineer of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (495) 638-44-42


N. V. Shvyndina
Национальный исследовательский технологический университет «МИСиС», г. Москва
Russian Federation
leading engineer of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (495) 638-44-42.


I. V. Sukhorukov
Национальный исследовательский технологический университет «МИСиС», г. Москва
Russian Federation
engineer of Scientific-research laboratory of inorganic nanomaterials, MISIS. Tel.: (495) 638-44-47


References

1. Arahira T., Maruta M., Matsuya S., Todo M. Development and characterization of a novel porous β-TCP scaffold with a three-dimensional PLLA network structure for use in bone tissue engineering. Mater. Lett. 2015. Vol. 152. P. 148—150.

2. Shavandi A., Bekhit A.E.A., Sun Z., Ali A., Gould M. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater. Sci. Eng. C. 2015. Vol. 55. P. 373—383.

3. Puvaneswary S., Talebian S., Raghavendran H.B., Murali M.R., Mehrali M., Afifi A.M., Kasim N.H.B.A., Kamarul T. Fabrication and in vitro biological activity of βTCP-Chitosan- Fucoidan composite for bone tissue engineering. Carbohyd. Polym. 2015. Vol. 134. P. 799—807.

4. Meyers M.A., Chen P.-Y., Lin A.Y.-M., Seki Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008. Vol. 53. Iss. 1. P. 1—206.

5. Kannan S., Rocha J.H.G., Ventura J.M.G., Lemos A.F., Ferreira J.M.F. Effect of Ca/P ratio of precursors on the formation of different calcium apatitic ceramics — An X-ray diffraction study. Scr. Mater. 2005. Vol. 53. Iss. 11. P. 1259—1262.

6. Legeros R.Z., Lin S., Rohanizadeh R., Mijares D., Legeros J.P. Biphasic calcium phosphate bioceramics: Preparation, properties and applications. J. Mater. Sci.: Mater. Med. 2003. Vol. 14. Iss. 3. P. 201—209.

7. Bouslama N., Ben Ayed F., Bouaziz J. Effect of fluorapatite additive on densification and mechanical properties of tricalcium phosphate. J. Mechan. Behav. Biomed. Mater. 2010. Vol. 3. Iss. 1. P. 2—13.

8. Leon B., Jansen J.A. Thin calcium phosphate coatings for medical implants. N.Y.: Springer, 2009.

9. Zheng X., Huang M., Ding C. Bond strength of plasmasprayed hydroxyapatite/Ti composite coatings. Biomaterials. 2000. Vol. 21. P. 841—849.

10. Chu P.K., Chen J.Y., Wang L.P., Huang N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R. 2002. Vol. 36. P. 143—206.

11. Probst J., Gbureck U., Thull R. Binary nitride and oxynitride PVD coatings on titanium for biomedical applications. Surf. Coat. Technol. 2001. Vol. 148. P. 226—233.

12. Liu C., Bi Q., Matthews A. Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti—6Al—4V artificial hip joints. Surf. Coat. Technol. 2003. Vol. 163—164. P. 597—604.

13. Podchernyaeva I.A., Panasyuk A.D., Yurechko D.V., Talash V.N. Spark-deposited coatings on magnesium alloys. Powder Metall. and Metal Ceram. 2010. Vol. 49. Iss. 1—2. P. 55—60.

14. Panteleenko F.I., Sarantsev V.V., Stolin A.M., Bazhin P.M., Azarenko E.L. Formation of composite coatings based on titanium carbide via electrospark alloying. Surf. Eng. Appl. Electrochem. 2011. Vol. 47. Iss. 4. P. 328—337.

15. Mukha I.M., Verkhoturov A.D., Shcherbakova L.I. Effect of electrode (tool) material density on the electric-spark alloying process. Soviet Powder Metall. and Metal Ceram. 1981. Vol. 20 (7). P. 486—488.

16. Verkhoturov A.D., Koval’chenko M.S., Podchernyaeva I.A. Effect of structure of titanium diboride on the conditions of formation of coatings in the electric-spark alloying of steel. Soviet Powder Metall. and Metal Ceram. 1983. Vol. 22 (8). P. 626—629.

17. Ablesimov N.E., Verkhoturov A.D., Pyagin S.A. On energetic criterion of metal erosion resistance. Poroshk. Metall. 1998. Vol. 1—2. P. 111—116.

18. Parkansky N., Beilis I.I., Boxman R.L., Goldsmith S., Rosenberg Yu. Anode mass loss during pulsed air arc deposition. Surf. Coat. Technol. 1998. Vol. 108—109. P. 253—256.

19. Chang-bin T., Dao-xin L., Zhan W., Yang G. Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications. Appl. Surf. Sci. 2011. Vol. 257. Iss. 15. P. 6364—6371.

20. Potanin A.Y., Levashov E.A., Pogozhev Y.S., Shvindina N.V., Kovalev D.Y. The features of combustion and structure formation of ceramic materials in the TiC0,5—Ti3POx—CaO system. Ceram. Int. 2015. Vol. 41. Iss. 6. P. 8177—8185.

21. Levashov E.A., Kudryashov A.E., Pogozhev Yu.S., Vakaev P.V., Zamulaeva E.I., Sviridova T.A. Specific features of formation of nanostructured electrospark protective coatings on the OT4-1 titanium alloy with the use of electrode materials of the TiC—Ti3AlC2 system disperse-strengthened by nanoparticles. Russ. J. Non-Ferr. Met. 2007. Vol. 48. No. 5. P. 368—378.

22. Levashov E.A., Vakaev P.V., Zamulaeva E.I., Kudryashov A.E., Pogozhev Yu.S., Shtansky D.V., Voevodin A.A., Sanz A. Nanoparticle dispersion-strengthened coatings and electrode materials for electrospark deposition. Thin Solid Films. 2006. Vol. 515. P. 1161—1165.

23. Bae J., Ida Y., Sekine K., Kawano F., Hamada K. Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement. J. Mechan. Behav. Biomed. Mater. 2015. Vol. 47. P. 77—86.

24. Zheng M., Gu M., Jin Y., Jin G. Preparation, structure and properties of TiO2—PVP hybrid films. Mater. Sci. Eng. B. 2000. Vol. 77. Iss. 1. P. 55—59.

25. Permpoon S., Houmard M., Riassetto D., Rapenne L., Berthomé G., Baroux B., Joud J.C., Langlet M. Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films. Thin Solid Films. 2008. Vol. 516. P. 957—966.

26. Cancarevic M., Zinkevich M., Aldinger F. Thermodynamic description of the Ti—O system using the associate model for the liquid phase. Calphad. 2007. Vol. 31. Iss. 3. P. 330—342.

27. Nasiri-Tabrizi B., Fahami A. Production of poorly crystalline tricalcium phosphate nanopowders using different mechanochemical reactions. J. Ind. Eng. Chem. Vol. 20. Iss. 4. P. 1236—1242.

28. Kolmas J., Kaflak A., Zima A., Ślósarczyk A. Alpha-tricalcium phosphate synthesized by two different routes: Structural and spectroscopic characterization. Ceram. Int. 2015. Vol. 41. Iss. 4. P. 5727—5733.

29. Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001. Vol. 46. Iss. 1—2. P. 1—184.

30. Gilman P.S., Benjamin J.S. Mechanical alloying. Annu. Rev. Mater. Res. 1983. Vol. 13. P. 279—300.

31. Kobyakov V.P., Kovalev D.Yu. Phase constitution of the combustion products of thermite mixtures modified by titanium oxide. Combust. Explos. Shock Waves. 2007. Vol. 43. No. 6. P. 674—681.

32. Zamulaeva E.I., Levashov E.A., Sviridova T.A., Shvyndina N.V., Petrzhik M.I. Pulsed electrospark deposition of MAX phase Cr2AlC based coatings on titanium alloy. Surf. Coat. Technol. 2013. Vol. 235. P. 454—460.

33. Brandes E.A., Brook G.B. Smithells metals reference book. 8-th ed. Amsterdam: Elsevier, 2004.

34. Zadra M., Casari F., Girardini L., Molinari A. Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall. 2008. Vol. 51. Iss. 1. P. 59—65.

35. Todaka Y., Umemoto M., Yamazaki A., Sasaki J., Tsuchiya K. Effect of strain path in high-pressure torsion process on hardening in commercial purity titanium. Mater. Trans. 2008. Vol. 49. Iss. 1. P. 47—53.


Review

For citations:


Loginov P.A., Levashov E.A., Potanin A.Yu., Kudryashov A.E., Manakova O.S., Shvyndina N.V., Sukhorukov I.V. Peculiarities of formation of sintered electrodes of the Ti–Ti3P–CaO composition and their application in technology of pulsed electric-discharge machining of titanium. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2015;(4):45-58. (In Russ.) https://doi.org/10.17073/1997-308X-2015-4-10-25

Views: 1014


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)