Kinetics of deposition, structure, and properties of Cr–Al–Si–B electric-discharge coatings on refractory nickel alloy
https://doi.org/10.17073/1997-308X-2015-4-59-70
Abstract
The deposition kinetics of electrospark coatings on EP718-ID heatproof nickel alloy is investigated using three compositions of SHS electrodes of the Cr–Al–Si–B system. The optimal frequency–energy deposition mode (Е = 0,048 J, I = 120 A, f = 3200 Hz, and τ = = 20 μs), which is characterized by a minimal electrode erosion with the satisfactory coating deposition rate, is established. Complex investigations into the structure, phase composition, and properties of coatings are performed. It is shown that electrospark coatings formed by Cr–Al–Si–B electrodes noticeably increase hardness, heat resistance, and wear resistance of EP718-ID nickel alloy and can be recommended to protect the surface of important parts and units made of nickel alloys.
About the Authors
A. E. KudryashovRussian Federation
Ph. D., leading research scientist of Scientific-educational centre SHS MISIS–ISMAN (119049, Russia, Moscow, Leninsky prospect, 4). Tel./fax: (495) 955-00-26
D. N. Lebedev
Russian Federation
postgraduate student of Scientific-educational centre SHS MISIS–ISMAN. Tel./fax: (495) 955-00-26
A. Yu. Potanin
Russian Federation
Ph. D., junior researcher of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (499) 237-53-36
N. V. Shvyndina
Russian Federation
leading engineer of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (495) 638-44-42
I. V. Sukhorukova
Russian Federation
engineer of Scientific-research laboratory of inorganic nanomaterials, MISIS (119049, Russia, Moscow, Leninsky prospect, 4). Tel.: (495) 638-44-47.
D. V. Shtansky
Russian Federation
Dr. Sci. (Phys.-Math.), professor of the Department of powder metallurgy and functional coatings MISIS, chief research scientist of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (499) 236-66-29
E. A. Levashov
Russian Federation
Dr. Sci. (Tech.), prof., acad. of RANS, head of Department of powder metallurgy and functional coatings MISIS, head of Scientific-educational centre SHS MISIS–ISMAN. Tel.: (495) 638-45-00
References
1. Soboyejo W.O., Srivatsan T.S. Advanced structural materials: Properties, design optimization and applications. USA: CRC Press, 2006.
2. Podchernyaeva I.A., Panasyuk A.D., Teplenko M.A., Podol’skii V.I. Protective coatings on heat-resistant nickel alloys: Review. Powder Metall. and Metal Ceram. 2000. Vol. 39. No. 9—10. P. 434—444.
3. Zamulaeva E.I., Levashov E.A., Sviridova T.A., Shvyndina N.V., Petrzhik M.I. Pulsed electrospark deposition of MAX phase Cr2AlC based coatings on titanium alloy. Surf. Coat. Technol. 2013. Vol. 235. P. 454—460.
4. Johnson R.N., Sheldon G.L. Advances in the electrospark deposition coating process. J. Vacuum Sci. Technol. Vacuum Surf. Films. 1986. Vol. 4. No. 6. P. 2740—2746.
5. Cadney S., Brochu M. Formation of amorphous Zr41,2Ti13,8Ni10Cu12,5Be22,5 coatings via the electrospark deposition process. Intermetallics. 2008. Vol. 16. No. 4. P. 518—523.
6. Reynolds J.L., Holdren R.L., Brown L.E. Electro-spark deposition. Adv. Mater. Process. 2003. Vol. 161. P. 35—37.
7. Hua Yu, Hong-xin Shi, Yao-li Wang, Ke-ke Zhang, Wen-yan Wang, Li-juan Han, Qing-hua Pang. NiCr alloy coating deposited on the surface of 35CrMo steel by the electrospark process. Mater. Sci. Forum. 2008. Vol. 575—578. P. 827—832.
8. Wang Ruijun, Qian Yiyu, Liu Jun. Interface behavior study of WC92—Co8 coating produced by electrospark deposition. Appl. Surf. Sci. 2005. Vol. 240. No. 1—4. P. 42—47.
9. Luo Cheng, Dong Shijie, Xiong Xiang. Microstructure and properties of tic coating by vibrating electrospark deposition. Key Eng. Mater. 2008. Vol. 373—374. P. 180—183.
10. Wang P.-Z., Pan G.-S., Zhou Y., Qu J.-X., Shao H.-S. Accelerated electrospark deposition and the wear behavior of coatings. J. Mater. Eng. Perform. 1997. Vol. 6. No. 6. P. 780—784.
11. Frangini S., Masci A. A study on the effect of a dynamic contact force control for improving electrospark coating properties. Surf. Coat. Technol. 2010. Vol. 204. No. 16—17. P. 2613—2623.
12. Ribalko A.V., Sahin O. The use of bipolar current pulses in electrospark alloying of metal surfaces. Surf. Coat. Technol. 2003. Vol. 168. No. 2—3. P. 129—135.
13. Ribalco A.V., Sahin O., Korkmaz K. A modified electrospark alloying method for low surface roughness. Surf. Coat. Technol. 2009. Vol. 203. No. 23. P. 3509—3515.
14. Yu-jiang Xie, Mao-cai Wang. Isothermal oxidation behavior of electrospark deposited MCrAlX-type coatings on a Ni-based superalloy. J. Alloys Compd. 2009. Vol. 480. No. 2. P. 454—461.
15. Yu-jiang Xie, Mao-cai Wang. Microstructural morphology of electrospark deposition layer of a high gamma prime superalloy. Surf. Coat. Technol. 2006. Vol. 201. No. 3—4. P. 691—698.
16. Zamulaeva E.I., Levashov E.A., Kudryashov A.E., Vakaev P.V., Petrzhik M.I. Electrospark coatings deposited onto an Armco iron substrate with nano- and microstructured WC—Co electrodes: Deposition process, structure, and properties. Surf. Coat. Technol. 2008. Vol. 202. No. 15. P. 3715—3722.
17. Akihiro Goto, Masao Akiyoshi, Hiroyuki Ochiai, Mitsutoshi Watanabe. Development of micro spark coating: Proc. 24-th Intern. Congress of the Aeronautical Science (ICAS 2004) (Yokohama, Japan, Sept. 2004). 2004. P. 1—7.
18. Pogozhev Yu.S., Potanin A.Yu., Levashov E.A., Kovalev D.Yu. The features of combustion and structure formation of ceramic materials in the Cr—Al—Si—B system. Ceram. Intern. 2014. Vol. 40. No. 10. P. 16299—16308.
19. Levashov E.A., Malochkin O.Y., Kudryashov A.E., Glukhov S.A., Sviridova T.A., Gammel F., Zuhentrung R. Influence of nanosized powders on combustion processes and formation of composition, structure, and properties of alloys of the system Ti—Al—В. Russ. J. Non-Ferr. Met. 2003. No. 1. P. 54—59.
20. Levashov E.A., Kudryashov A.E., Pogozhev Yu.S., Vakaev P.V., Sviridova T.A., Zamulaeva E.I., Milonich S., Todorovich M. An investigation of the influence of the parameters of pulse discharges on mass transfer, structure, composition, and properties of TiC—NiAl-based electrical spark coatings modified by nanodispersed components. Russ. J. Non-Ferr. Met. 2004. Vol. 45. No. 11. P. 32—40.
21. Lešnjak A., Tušek J. Processes and properties of deposits in electrospark deposition. Sci. Technol. Weld. Join. 2002. Vol. 7. No. 6. P. 391—396.
22. Pogozhev Yu.S., Levashov E.A., Zamulaeva E.I., Potanin A.Yu., Vlasova A.Yu., Novikov A.V., Kochetov N.A. Combustion synthesis of multicomponent targets based on ceramics in the Cr—Al—Si—B system for PVD of heat-resistant thin films. In: Book of Jahrbuch Oberflächen technik. Bd. 69. Ed. R. Suchentrunk. Bad Saulgau, Germany: Eugen G. Leuze Verlag KG, 2013. P. 126—132.
23. Kiryukhantsev-Korneev Ph.V., Pierson J.F., Bauer J.Ph., Levashov E.A., Shtansky D.V. Strengthening Cr—Al—Si—B—(N)
24. coatings with heat resistance to 1200 °C. Glass Phys. Chem. 2011. Vol. 37. No. 4. P. 411—417.
25. Kiryukhantsev-Korneev Ph.V., Pierson J.F., Kuptsov K.A., Shtansky D.V. Hard Cr—Al—Si—B—(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target. Appl. Surf. Sci. 2014. Vol. 314. P. 104—111.
Review
For citations:
Kudryashov A.E., Lebedev D.N., Potanin A.Yu., Shvyndina N.V., Sukhorukova I.V., Shtansky D.V., Levashov E.A. Kinetics of deposition, structure, and properties of Cr–Al–Si–B electric-discharge coatings on refractory nickel alloy. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2015;(4):59-70. (In Russ.) https://doi.org/10.17073/1997-308X-2015-4-59-70