Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Transformation of chemical and phase composition of the Al–Ni and Al–Ni–Cr laminated coatings after high-temperature heating

https://doi.org/10.17073/1997-308X-2016-1-51-59

Abstract

The study covers transformation of the structure, phase and chemical composition in the Al–Ni and Al–Ni–Cr coatings obtained by the diffusion interaction under the heat treatment of the impact bonded 12Kh1MF+NP2+AD1 and 12Kh1MF+Kh20N80+AD1 laminated composites. It was found that increasing the hold time at 1100 °C leads to the stabilization of chemical composition in the surface coating accompanied by the increase of nickel and decrease of aluminium proportion. It was shown that redistribution of aluminium within the diffusion coating during the temperature impact is slower in the Al–Ni–Cr system than in the binary Al–Ni system.

About the Authors

V. G. Shmorgun
Volgograd State Technical University (VSTU)
Russian Federation

Dr. Sci. (Tech.), prof., Department of materials science and composite materials (MS&CM),  

400005, Volgograd, Lenin avenue, 28



A. I. Bogdanov
Volgograd State Technical University (VSTU)
Russian Federation

Cand. Sci. (Tech.), senior lecturer, Department of MS&CM,

400005, Volgograd, Lenin avenue, 28



A. O. Taube
Volgograd State Technical University (VSTU)
Russian Federation

postgraduate student, junior researcher, Department of MS&CM,

400005, Volgograd, Lenin avenue, 28



A. G. Serov
Volgograd State Technical University (VSTU)
Russian Federation

undergraduate student, Department of MS&CM,

400005, Volgograd, Lenin avenue, 28



References

1. Xiang Z.D., Zeng D., Zhu C.Y., Wu D.J., Datta P.K. A phenomenological model for lifetime design of Ni2Al3/Ni hybrid coating formed on creep resistant ferritic steels. J. Mater. Sci. 2011. Vol. 47. Iss. 1. P. 257—266.

2. Xiang Z.D., Zeng D., Zhu C.Y., Datta P.K. Degradation kinetics at 650 °C and lifetime prediction of Ni2Al3/Ni hybrid coating for protection against high temperature oxidation of creep resistant ferritic steels. Corros. Sci. 2011. Vol. 53. P. 3426—3434.

3. Xiang Z.D., Zeng D., Zhu C.Y., Rose S.R., Datta P.K. Steam oxidation resistance of Ni-aluminide/Fe-aluminide duplex coatings formed on creep resistant ferritic steels by low temperature pack cementation process. Corros. Sci. 2011. Vol. 53. P. 496—502.

4. Wang J., Wu D.J., Zhu C.Y. Thermal stability enhancement of hybrid Ni2Al3/Ni coatings on creep resistant ferritic steels by a mechanism of thermodynamically constrained interdiffusion. Surf. Coat. Technol. 2013. Vol. 232. P. 489—496.

5. Susan D.F., Marder A.R. Ni—Al composite coatings: diffusion analysis and coating lifetime estimation. Acta Mater. 2001. Vol. 49. P. 1153—1163.

6. Kolomytsev P.Т. Vysokotemperaturnye zashchitnye pokrytiya dlya nikelevykh splavov [High-temperature protective coatings for nickel alloys]. Moscow: Metallurgiya, 1991.

7. Shmorgun V.G., Bogdanov A.I., Taube A.O. Kompleksnaya tekhnologiya polucheniya pokrytii iz alyuminidov nikelya na poverkhnosti stal’nykh izdelii [Complex technology for producing nickel aluminide coating on the surface of steel parts]. Izvestiya vuzov. Chernaya metallurgiya. 2014. No. 5. P. 64—65.

8. Shmorgun V.G., Trykov Yu.P., Slautin O.V., Metelkin V.V., Bogdanov A.I. The kinetics of diffusion processes in the nickel-aluminum composition. Russ. J. Non-Ferr. Met. 2009. Vol. 50. No. 3. P. 286—289.

9. Shmorgun V.G., Taube A.O., Krohalev A.V. Investigation of the phase composition of the diffusion zone in the Al—Ni—Cr composite material. Appl. Mech. Mater. 2015. Vol. 698. P. 430—433.

10. Shmorgun V.G., Bogdanov A.I., Trunov M.D., Taube A.O. Investigation on thermal stress-strain state in multilayered composites during nickel aluminide coatings formation. WSEAS Trans. Appl. Theoret. Mech. 2015. Vol. 10. P. 180—186.

11. Okamoto H. Al—Ni (aluminum-nickel). J. Phase Equilib. Diffus. 2004. Vol. 25. No. 4. P. 394—396.

12. Kablov E.N., Muboyadzhyan S.A. Heat resistant coatings for the high pressure turbine blades of promising GTEs. Russ. Metall. (Metally). 2012. Vol. 2012. No. 1. P. 1—7.

13. Kuznetsov V.P., Lesnikov V.P., Moroz E.V., Konakova I.P., Khadyev M.S. Structure and phase composition of complex refractory coating and of the reaction zone of interaction with single-crystal alloy ZHS36-VI after high-temperature holds. Met. Sci. Heat Treat. 2013. Vol. 55. No. 3-4. P. 203—208.

14. Muboyadzhyan S.A., Galoyan A.G. Diffusion aluminide coatings for protecting the surface of the internal space of single—crystal turbine blades made of rhenium- and rhenium- ruthenium-containing high-temperature alloys: Pt. II. Russ. Metall. (Metally). Vol. 2013. No. 3. P. 198—205.

15. Desai V. Materials for high-temperature protection. J. Mater. Eng. Perform. 2006. Vol. 58. No. 1. P. 15—16.


Review

For citations:


Shmorgun V.G., Bogdanov A.I., Taube A.O., Serov A.G. Transformation of chemical and phase composition of the Al–Ni and Al–Ni–Cr laminated coatings after high-temperature heating. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(1):51-59. (In Russ.) https://doi.org/10.17073/1997-308X-2016-1-51-59

Views: 1083


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)