Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

Research on dynamics of energy-intensive mill lining with mechanical activation of silicon powder

https://doi.org/10.17073/1997-308X-2016-2-4-8

Abstract

The paper presents an experimental study of lining the energy-intensive planetary mill internal surfaces with silicon powder. The experimental dependences were determined for the amount of grinded material used for lining on the time of mechanical activation (MA). The lining speed constant was defined in two ways for short and long duration MA using analytical formulae and experimental results obtained with the inverse problem method. The first one was based on the analysis of experimental curves describing the lining dynamics with the least square method. The second one suggested the constant value measurement according to the tangent of the angle between the X-axis and the straight lines that approximate the experimental curves at the initial period of grinder operation. It was found that the increase in MA duration led to deceleration of mill lining with silicon powder. It was also found that the value of the lining speed constant lowered as the MA time increased. Therefore, the theoretical calculations adequately fit to experimental data.

About the Authors

O. V. Lapshin
Tomsk Science Centre, Tomsk Division, Russian Academy Sciences
Russian Federation
Dr. Sci. (Phys.-Math.), Senior Staff Scientist, Department for structural macrokinetics, 634021, Tomsk, Akademicheski pr., 10\3


O. A. Shkoda
Tomsk Science Centre, Tomsk Division, Russian Academy Sciences
Russian Federation

Cand. Sci. (Eng.), Senior Staff Scientist, Department for structural macrokinetics,

634021, Tomsk, Akademicheski pr., 10\3



References

1. Avvakumov E.G. Mekhanicheskie metody aktivatsii khimicheskikh prozessov [Mechanical methods of activation of chemical processes]. Novosibirsk: Nauka, 1986.

2. Boldyrev V.V. Issledovaniya po mekhanokhimii tverdyh veshchestv [Research on Mechanochemistry of solids]. Vestnik RFFI. 2004. No. 3(37). Р. 38—59.

3. Butyagin Yu.P. Problemy i perspektivy rasvitiya mekhanokhomii [Problems and prospects of development mehanohimii]. Uspekhi khimii. 1994. Vol. 63. No.12. Р. 1031—1043.

4. Korchagin M.A., Grigoreva Y.F., Barinova A.P., Lyakhov N.Z. Tverdofasnyi rezhim samorasrostranyayushchegosya vysokotemperaturnogo sinteza [Solid-phase mode of selfpropagating high temperature synthesis]. Doklady RAN. 2000. Vol. 372. No. 1. Р. 40—42.

5. Boldyrev V.V., Avvakumov E.G., Boldyreva E.V. Fundamentalnye osnovy mekhanicheskoi aktivatzii, mekhanosinteza i mechanokhimicheskikh tekhnologii. [Fundamentals of mechanical activation, mechanosynthesis and mechanochemical technologies]. Ed. Avvakumov E.G. Novosibirsk: SO RAN, 2009.

6. Bernard F., Gaffet E. Mechanical Alloying in the SHS research. Int. J. Self-Propag. High-Temp. Synth. 2001. No. 2. P. 109—131.

7. Shkoda O.A., Terekhova O.G. Vliyanie prodolzitelnosti diskretnykh periodov mekhanicheskoi aktivatsii na posloinoe SVS-gorenie v nizkoenergeticheskoy sisteme niobii—kremnii [The effect of the duration of discrete periods of mechanical activation on layer-by-layer SAF — burning in nizkoenergeticheskogo niobium—silicon]. Fizika i khimiya obrabotki materialov. 2010. No. 6. Р. 62—68.

8. Talako T.L. Issledovanie mekhanisma mekhanoaktivatzii na samorasprostranyayushchiicya vysokotemperaturnyi sintez materialov [Investigation of the mechanism of mechanical activation on self — propagation high-temperature synthesis of materials]. Isvestiya Natzionalnoi Academii Belarusi. Seriya fiz.-tech. nauk. 2014. No. 1. Р. 25—32.

9. Kasatzkii N.G., Shkoda O.A. Vliyanie mekhanicheskoy aktivatzii na teplovoi vzryv v Ti—Ni systeme [Influence of mechanical activation on thermal explosion in the Ti—Ni system]. Fizika i khimiya obrabotki materialov. 2012. No. 5. Р. 71—75.

10. Urakaev F.K., Takach L., Soika V., Shevchenko V.S., Chupakhin A.P., Boldyrev V.V. Modelirovanie goreniya termitnykh sostavov v mekhanokhimicheskikh reaktorakh na primere sistemy Zn—Sn—S. Zhurnal fizicheskoi khimii. 2002. Vol. 76. No. 6. Р. 1052—1058.

11. Urakaev F.K., Boldyrev V.V. Teoreticheskii analis uslovii polucheniya nanorasmernykh system v mekhanokhimicheskilh reaktorakh [Theoretical analysis of nanoscale systems in mechanochemical reactors]. Zhurnal fizicheskoi khimii. 2005. Vol. 79. No. 4. Р. 651—661.

12. Gusev A.I., Rempel A.A. Nanokrislaicheskie materialy [Nanocrystalline materials]. Moscow: Fizmatlit, 2001.

13. Lapshin O.V., Kasatzkii N.G., Smolyakov V.K. Fenomenologicheskaya model futerovki poverkhnostei melnitzy pri izmelchenii [A phenomenological model of the lining surfaces of the mill during grinding]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytyiya. 2013. No. 1. Р. 8—12.

14. Terehova O.G., Shkoda O.A., Maksimov Yu.M., Chalukh L.D. Effect of mechanical activation of silicon and niobium and their influence on SHS synthesis. Int. J. SHS. 1999. Vol. 8. No. 3. P. 299—306.

15. Smolyakov V.K., Lapshin O.V. Makroskopicheskaya kinetika mekhanokhimicheskogo synteza [Macroscopic kinetics of mechanochemical synthesis]. Tomsk: IOA SO RAN, 2011.


Review

For citations:


Lapshin O.V., Shkoda O.A. Research on dynamics of energy-intensive mill lining with mechanical activation of silicon powder. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(2):4-8. (In Russ.) https://doi.org/10.17073/1997-308X-2016-2-4-8

Views: 784


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)