Identification of modified Drucker-Prager yield condition and modeling of plasticized titanium raw material compaction
https://doi.org/10.17073/1997-308X-2016-2-22-29
Abstract
About the Authors
I. M. BerezinRussian Federation
PhD Eng. Sci., Researcher at the Laboratory of system simulation, 620049, Ekaterinburg, Komsomolskaya str., 34;
Senior Researcher, 620002, Ekaterinburg, Mira str., 19
A. V. Nesterenko
Russian Federation
PhD Eng. Sci., Researcher at the Laboratory of material micromechanics
A. G. Zalazinskii
Russian Federation
Dr. Sci. (Eng.), Prof., Head at the Laboratory of system simulation
References
1. Ivasishin O.M., Savvakin D.G., Bondareva K.A., Mokson V.S., Duz’ V.A. Proizvodstvo titanovykh splavov i detalei ekonomichnym metodom poroshkovoi metallurgii dlya shirokomasshtabnogo promyshlennogo primeneniya [Manufacture of titanium alloy and parts economical method of powder metallurgy for large-scale industrial applications]. Nauka ta innovacii. 2005. Vol. 1. No. 2. P. 44—57.
2. Shevchenko V.V., Nizkin I.D., Mal’kov A.V., Luk’yanova E.V. Osobenno-sti kompaktirovaniya granul titanovogo splava VT5-1kt, legirovannykh vodorodom [Features of compacting the granules VT5-1kt titanium alloy doped with hydrogen]. Izv. vuzov. Tsvet. metallurgiya. 2008. No. 3. P. 39—45.
3. Skvortsova S.V., Il’in A.A., Senkevich K.S. Formirovanie struktury granul iz splava VT6 pri termovodorodnoi obrabotke [Formation of the structure of the granules of the alloy VT6 with the thermo-hydrogen treatment]. Titan. 2010. No. 4. P. 18—22.
4. Lapovok R., Tomus D., Skripnyuk V.M., Barnett M.R., Gibson M.A. The effect of hydrogenation on the ECAP compaction of Ti—6Al—4V powder and the mechanical properties of compacts. Mater. Sci. Eng. A. 2009. Vol. 513—514. P. 97—108.
5. Lapovok R., Tomus D., Barnett M.R., Gibson M.A. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling. Int. J. Mater. Res. 2009. Vol. 100. No. 12. P. 1727—1738.
6. Mueller W.M., Blackledge J.P., Libowitz G.G. Gidridy metallov [Metal hydrides]. Moscow: Atomizdat, 1973.
7. Nesterenko A.V., Novozhonov V.I., Zalazinskii A.G., Skripov A.V. Influence of temperature on compactibility of briquettes of titanium sponge alloyed with hydrogen. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 287—292.
8. ABAQUS 6.8 Theory Manual 2007, Dassault Systemes Simulia Corp., Providence, RI, USA.
9. Chtourou H., Guillot M., Gakwaya A. Modeling of the metal powder compaction process using the cap model. Pt. I. Experimental material characterization and validation. Int. J. Solids Struct. 2002. Vol. 39. No. 4. P. 1059—1075.
10. Zhang B.S., Jain M., Zhao C.H., Bruhis M., Lawcock R., Ly K. Experimental calibration of density-dependent modified Drucker-Prager Cap model using an instrumented cubic die for powder compact. Powder Technol. 2010. Vol. 204. No. 1. P. 27—41.
11. Shang C., Sinka I.C., Pan J. Constitutive Model Calibration for Powder Compaction Using Instrumented Die Testing. Exper. Mechan. 2012. Vol. 52. No. 7. P. 903—916.
12. Garner S., Strong J., Zavaliangos A. The extrapolation of the Drucker-Prager/Cap material parameters to low and high relative densities. Powder Technol. 2015. Vol. 283. P. 210—226.
13. Hernandez J.A., Oliver J., Cante J.C., Weyler R. Numerical modeling of crack formation in powder forming processes. Int. J. Solids Struct. 2011. Vol. 48. No. 2. P. 292—316.
14. Jonsen P., Haggblat H.A., Sommer K. Tensile strength and fracture energy of pressed metal powder by diametral compression test. Powder Technol. 2007. Vol. 176. No. 2-3. P. 148—155.
15. Procopio A.P., Zavaliangos A., Cunningham J.C. Analysis of the diametrical compression test and the applicability to plastically deforming materials. J. Mater. Sci. 2003. Vol. 38. No. 17. P. 3629—3639.
16. Han L.H., Elliot J.A., Bentham A.C., Mills A., Amidon G.E., Hancock B.C. A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders. Int. J. Solids Struct. 2008. Vol. 45. No.10. P. 3088—3106.
17. Rybin Yu.I., Rudskoi A.I., Zolotov A.M. Matematicheskoe modelirovanie i proektirovanie tekhnologicheskikh protsessov obrabotki metallov davleniem [Mathematical simulation and design of metal forming processes]. S.Pb.: Nauka, 2004.
18. Zalazinskii A.G. Plasticheskoe deformirovanie strukturno-neodnorodnykh materialov [Plastic deformation of structural inhomogeneous materials]. Ekaterinburg: UrO RAN, 2000.
19. Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivlenie plasticheskoi deformatsii metallov i splavov [Resistance of plastic deformation of metals and alloys]. Moscow: Metallurgiya, 1983.
20. Aksenov Yu.A., Bashkin I.O., Kolmogorov V.L., Ponyatovskii E.G., Taluts G.G., Kataya V.K., Levin I.V., Potapenko Yu.I., Trubin A.N. Vliyanie vodoroda na plastichnost’ i soprotivlenie deformatsii tekhnicheskogo titana VT1-0 pri temperaturakh do 750 °C [Influence of hydrogen on plasticity and resistance of deformation of the technical titan of WT1-0 at temperatures to 750 °C]. Fizika metallov i metallovedenie. 1989. Vol. 67. No. 5. P. 993—999.
Review
For citations:
Berezin I.M., Nesterenko A.V., Zalazinskii A.G. Identification of modified Drucker-Prager yield condition and modeling of plasticized titanium raw material compaction. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(2):22-29. (In Russ.) https://doi.org/10.17073/1997-308X-2016-2-22-29