Impact of mechanical activation pattern and conditions on carbide formation in Ta–Zr–C SHS system
https://doi.org/10.17073/1997-308X-2016-2-30-40
Abstract
About the Authors
V. V. KurbatkinaRussian Federation
Ph. D., Leading Researcher of the Scientific-educational centre,
119049, Russia, Moscow, Leninsky pr., 4
E. I. Patsera
Russian Federation
PhD, Researcher of the Scientific-educational centre
E. A. Levashov
Russian Federation
Dr. Sci. (Tehn.), Prof., Acad. of RANS,
Director of the Scientific-educational centre SHS of MISIS–ISMAN,
Head of Department of powder metallurgy and functional coatings of MISIS
S. A. Vorotylo
Russian Federation
Graduate Student of the Department of powder metallurgy and functional coatings
A. N. Timofeev
Russian Federation
Dr. Sci. (Tehn.), 1-st Deputy Director General,
141070, Moskovskii reg., Korolev, Pionerskaya str.,4
References
1. Simonenko E.P., Ignatov N.A., Simonenko N.P., Ezhov Yu.S., Sevastyanov V.G., Kuznetsov N.T. Synthesis of highly dispersed super-refractory tantalum-zirconium cabide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via solgel technology. Russ. J. Inorg. Chem. 2011. Vol. 56. No. 11. P. 1681—1687.
2. Ghaffari S.A., Faghihi-Sani M.A., Golestani-Fard F., Nojabayy M. Diffusion and solid solution formation between the binary carbides of TaC, HfC and ZrC. Int. J. Refract. Met. Hard Mater. 2013. Vol. 41. P. 180—184.
3. Pierson H.O. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications. Westwood: Noyes Publications, 1996. P. 8—16.
4. Sciti D., Silvestroni L., Guicciardi S., Fabbriche D.D., Bellosi A. Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi2 or MoSi2. J. Mater. Res. 2009. Vol. 24. No. 6. P. 2056—2065.
5. Silvestroni L., Sciti D., Kling J., Lauterbach S., Kleebe H-J. Sintering mechanisms of zirconium and hafnium carbides doped with MoSi2. J. Am. Ceram. Soc. 2009. Vol. 92. No. 7. P. 1574—1579.
6. Landwehr S.E., Hilmas G.E., Fahrenholtz W.G., Talmy I.G. Processing of ZrC—Mo cermets for high temperature applications. Part II: pressureless sintering and mechanical properties. J. Am. Ceram. Soc. 2008. Vol. 91. No. 3. P. 873—878.
7. Wang X-G., Liu J-X., Kan Y-M., Zhanga G-J. Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) additions. J. Eur. Ceram. Soc. 2012. Vol. 32. No. 8. P. 1795—1802.
8. Vallance S.R. Microwave synthesis and mechanistic examination of the transition metal carbides: thesis for PhD degree. University of Nottingham, 2008.
9. He H., Zhou K., Xiong X., Huang B. Investigation on decomposition mechanism of tantalum ethylate precursor during formation of TaC on C/C composite material. Mater. Lett. 2006. Vol. 60. No. 28. P. 3409—3412.
10. Sun W., Xiong X., Huang B., Li G., Zhang H., Chen Z., Zheng X-L. ZrC ablation protective coating for carbon / carbon composites. Carbon N. Y. 2009. Vol. 47. No. 14. P. 3368—3371.
11. Shen X-T., Li K-Z., Li H-J., Fu Q-G., Li S-P., Deng F. The effect of zirconium carbide on ablation of carbon/ carbon composites under an oxyacetylene flame. Corros. Sci. 2011. Vol. 53. No. 1. P. 105—112.
12. Garg S. P., Krishnamurthy N. The O—Ta (Oxygen-Tantalum) system. Phase Equilibria. 1996. Vol. 17. No. 1. P. 63—77.
13. Wang S-L., Li K., Li H-J., Zhang Y-L. Microstructure and ablation resistance of ZrC nanostructured coating for carbon/carbon composites. Mater. Lett. 2013. Vol. 107. P. 99—102.
14. Zhao L., Jia D., Duan X., Yang Z., Zhou Y. Oxidation of ZrC—30vol.%SiC composite in air from low to ultrahigh temperature. J. Eur. Ceram. Soc. 2012. Vol. 32. No. 4. P. 947—954.
15. Lipke D.W., Ushakov S.V., Navrotsky A., Hoffman W.P. Ultra-high temperature oxidation of a hafnium carbide-based solid solution ceramic composite. Corros. Sci. 2014. Vol. 80. P. 402—407.
16. Bargeron C.B., Benson R.C., Newman R.W., Jette A.N., Phillips T.E. Oxidation mechanisms of hafnium carbide and hafnium diboride in the temperature range 1400 to 2100 °C. Johns Hopkins APL Technical Digest. 1993. Vol. 14. No. 1. P. 29—36.
17. Chen Y.I., Chen S.M. Oxidation study of Ta—Zr coatings. Thin Solid Films. 2013. Vol. 529. P. 287—291.
18. Patsera E.I., Levashov E.A., Kurbatkina V.V., Kovalev D.Yu. Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures. Ceram. Int. 2015. Vol. 41. No. 7. P. 8885—8893.
19. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 2008. Vol. 12. No. 3-4. P. 44—50.
20. Evstigneev V.V., Vol’pe B.M., Milyukova I.V., Sajgutin G.V. Integral’nye tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Integral technologies of SHS]. Mosсow: Vysshaya shkola, 1996.
21. Lyahov N.Z., Talako T.L., Grigor’eva T.F., Lomovskij O.I. Vliyanie mekhanoaktivacii na processy fazo- i strukturoobrazovaniya pri samorasprostranyayushchemsya vysokotemperaturnom sinteze [Influence of mechanical activation on the processes of phase and structure formation during SHS]. Novosibirsk: Parallel’, 2008.
22. Merzhanov A.G. Kontseptsiya razvitiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza kak oblasti nauchno-tekhnicheskogo protsessa [Concept of SHS as a field of scientific and technical progress]. Chernogolovka: Territoriya, 2003.
23. Ermilov A.G., Bogatyreva E.V. Predvaritel’naya mekhanoaktivatsiya [Preliminary mechanical activation]. Moscow: MISIS, 2012.
24. Riley D.P., Kisi E.H., Phelan D. SHS of Ti3SiC2: Ignition Temperature Depression By Mechanical Activation. J. Eur. Ceram. Soc. 2006. Vol. 26. No. 6. P. 1051—1058.
25. Tsuchida T., Yamamoto S. Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures. J. Eur. Ceram. Soc. 2004. Vol. 24. No. 1. P. 45—51.
26. Samsonov G.V. Vysokotemperaturnye karbidy [Refractory carbides]. Kiev: Naukova dumka, 1975.
27. Chen Y-I., Chen S-M. Oxidation study of Ta—Zr coatings. Thin Solid Films. 2013. Vol. 529. P. 287—291.
28. Jastin J.F., Jankowiak A. Ultra-high temperature ceramics: densification, properties and thermal stability. Aerospace Lab. 2011. No. 3. P. 1—11.
29. Rogachev A.S, Mukasyan A.S. Combustion for Material Synthesis. Boca Raton: CRC Press, 2014.
30. Shcherbakov V.A., Pityulin A.N. Osobennosti goreniya sistemy Ti—C—B [Cumbustion features in Ti—C—B system]. Fizika goreniya i vzryva. 1983. Vol. 19. No. 5. P. 108—111.
31. Emeleus H.J., Sharpe A.G. Advances In Inorganic Chemistry And Radiochemistry. New York: Academic Press, 1966.
32. Ezhov Yu.S., Ignatov N.A., Kuznetsov N.T., Sevast’yanov V.G., Simonenko E.P., Simonenko N.P. Nizkotemperaturnyi sintez nanodispersnykh karbidov tantala, tsirkoniya i gafniya [Low-temperature synthesis of nano-dispersed carbides of tantalum, zirconium and hafnium]. Zhurnal neorganicheskoi khimii. 2011. Vol. 56. No. 5. P. 1—4.
Review
For citations:
Kurbatkina V.V., Patsera E.I., Levashov E.A., Vorotylo S.A., Timofeev A.N. Impact of mechanical activation pattern and conditions on carbide formation in Ta–Zr–C SHS system. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(2):30-40. (In Russ.) https://doi.org/10.17073/1997-308X-2016-2-30-40