DYNAMICS OF PHASE FORMATION DURING SYNTHESIS OF MAGNESIUM DIBORIDE FROM ELEMENTS IN THERMAL EXPLOSION MODE
https://doi.org/10.17073/1997-308X-2016-3-12-22
Abstract
The paper uses the method of time-resolved X-ray diffraction (TRXRD) and studies the effect of Mg + 2B mixture heating rate on the dynamics of phase formation during thermal explosion in helium environment. It was shown that MgB2 phase occurs with no intermediate compounds formed. The presence of impurity oxygen is a significant factor affecting MgB2 formation kinetics. There is no sufficient time for oxide film formation on magnesium particle surfaces at the charge mixture heating rate of 150–200 °C/min, and thus Mg + 2B = MgB2 reaction proceeds by a mechanism of reaction diffusion immediately upon magnesium melting. Synthesis products are mostly composed of MgB2 and traces of MgO at the level of 5 %. The temperature of thermal explosion is 1100 °C. At the heating rate of 30–50 °C/min, a relatively thick oxide layer grows on the magnesium surface, which inhibits melt spreading and shifts the beginning of MgB2 formation reaction by 8–9 s. Synthesis products contain MgB2 and up to 15 % of MgO. The temperature of thermal explosion is 1020 °C.
About the Authors
A. Yu. PotaninRussian Federation
PhD, Researcher Assistant of Scientific-educational center of SHS, MISIS–ISMAN.
119049, Russia, Moscow, Leninsky pr., 4. E-mail: a.potanin@inbox.ruE. A. Levashov
Russian Federation
Dr. Sci. (Tech.), Prof., Acad. of RANS, Head of Department of powder metallurgy and multifunctional coatings of MISIS, Head of Scientific-educational center of SHS
D. Yu. Kovalev
Russian Federation
PhD, Head of Laboratory of X-ray diffraction studies, ISMAN.
142432, Russia, Moscow region, Chernogolovka, Academica Osipyana str., 8. E-mail: kovalev@ism.ac.ruReferences
1. Guseva L. Vysokotemperaturnye sverkhprovodniki. Perspektivy ispol’zovaniya v SVCh-komponentakh [Hightemperature superconductors. Prospects for the use in microwave components]. Elektronika NTB. 1999. No. 2. P. 21—30.
2. Svetikov Yu. Sovremennye tendentsii razvitiya kabel’nogo proizvodstva [Modern trends in the development of cable production]. Komponenty i tekhnologii. 2007. No. 73. P. 137—142.
3. Tinkkham M. Vvedenie v sverkhprovodimost’ [Introduction to superconductivity]. Moscow: Atomizdat, 1980.
4. Golovashkin A.I. Vysokotemperaturnye sverkhprovodyashchie keramiki [High-temperature superconducting ceramics]. Uspehi fizicheskih nauk. 1987. Vol. 30. No. 8. P. 659—670.
5. Ivanovskii A.L. Zonnaya struktura i svoistva sverkhprovodyashchego MgB2 i rodstvennykh soedinenii (Obzor) [Band structure and properties of superconducting MgB2 and related compounds (A review)]. Fizika tverdogo tela. 2003. Vol. 45. No. 10. P. 1829—1859.
6. Ivanovskii, A.L. Sverkhprovodyashchiy MgB2 i rodstvennye soedineniya; sintez, svoystva, elektronnaya struktura [Superconductive MgB2 and related compounds: Synthesis, properties and electronic structure]. Uspekhi Khimii. 2001. Vol. 70. No. 9. P. 811—829.
7. Radev D.D., Marinov M., Tumbalev V., Radev I., Konstantinov L. Mechanically activated self-propagated high-temperature synthesis of nanometer-structured MgB2. Physica C. 2005. Vol. 418. Iss. 1-2. P. 53—58.
8. Xiujuan Chen, Tiandong Xia, Ming jing Wang, Wenjun Zhao, Tianzuo Liu. Microstructural transformation during combustion synthesis of MgB2 superconductor. Physica C. 2007. Vol. 454. Iss. 1-2. P. 38—42.
9. Przybylski K., Stobierski L., Chmist J., Kołodziejczyk A. Synthesis and properties of MgB2 obtained by SHS method. Physica C. 2003. Vol. 387. Iss. 1-2. P. 148—152.
10. Zlotnikov I., Gotman I., Gutmanas E.Y. Processing of dense bulk MgB2 superconductor via pressure-assisted thermal explosion mode of SHS. J. Eur. Ceram. Soc. 2005. Vol. 25. No. 15. P. 3517—3522.
11. Rosenband V., Gany A. Thermal explosion synthesis of a magnesium diboride powder. Combustion, Explosion, and Shock Waves. 2014. Vol. 50. Iss. 6. P. 653—657.
12. Ramdane W., Bendjemil B., Hafs A., Hendaoui A., Guerioune M., Vrel D. Structural characterization and superconducting properties of MgB2 prepared by SHS-method. Int. J. Self-Propagating High-Temperature Synthesis. 2007. Vol.16. Iss. 4. P. 207—212.
13. Feng Wang-Jun, Xia Tian-Dong, Liu Tian-Zuo, Zhao WenJun, Wei Zhi-Qiang. Bulk MgB2 superconductor with high critical current density synthesized by self-propagating high-temperature synthesis method. Chinese Physics. 2005. Vol. 14. No. 11. P. 2325—2328.
14. Rosenband V., Gany A. Sintez poroshka diborida magniya v rezhime teplovogo vzryva [Thermal explosion synthesis of a magnesium diboride powder]. Combust. Explos. Shock Waves. 2014. Vol. 50. Iss. 6. P. 653—657.
15. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov Yu.M., Yukhvid V.I. Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Advanced materials and technology SHS]. Moscow: MISIS, 2011.
16. Amosov A.P., Borovinskaya I.P., Merzhanov A.G. Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov [Powder technology SHS materials]. Sci. Ed. V.N. Antsiferov. Moscow: Mashinostroenie-1, 2007.
17. Rogachev A.S., Mukasyan A.S., Varma A. Volume combustion modes in heterogeneous reaction systems. J. Mater. Synth. Proc. 2002. Vol. 10. Iss. 1. P. 31—36.
18. Ponomarev V.I., Kovalev D.Yu. Time-resolved X-ray diffraction during combustion in the Ti—C—B system. Int. J. Self-Propagation High-Temperature Synthesis. 2005. Vol. 14. Iss. 2. P. 111—117.
19. Ponomarev V.I., Khomenko I.O., Merzhanov A.G. A laboratory methods of time resolved X-ray diffraction. Crystallography. 1995. Vol. 1. P. 14—17.
20. Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals. Met. Sci. Heat Treat. 2000. Vol. 42. Iss. 8. P. 309—313.
21. GOST 27417-98. Poroshki metallicheskie. Opredelenie obshchego soderzhaniya kisloroda metodom vosstanovitel’noy ekstraktsii [Metallic powders. Determination of total oxygen by reducing extraction]. Moscow: Izdatelstvo standartov, 1998.
22. Margadonna S., Muranaka T., Prassides K., Maurin I., Brigatti K., Ibberson R.M., Arai M., Takata M. Akimitsu J. Phase inhomogeneities and lattice expansion near Tc in the Mg11B2 superconductor. Phys.: Condens. Mater. 2001. Vol. 13. Iss. 35. P. 795—802.
23. Teng-Shih Shih, Zin-Bou Liu. Thermally-formed oxide on aluminum and magnesium. Mater. Trans. 2006. Vol. 47. Iss. 5. P. 1347—1353.
24. Rogachev A.S., Mukasyan A.S. Gorenie dlya sinteza materialov: Vvedenie v strukturnuyu makrokinetiku [Combustion for material synthesis]. Moscow: Fizmatlit, 2012.
25. Mukasyan A.S., White J.D.E., Kovalev D.Yu., Kochetov N., Ponomarev V.I., Son S. Dynamics of phase transformation during thermal explosion in the Al—Ni system: Inf luence of mechanical activation. Physica B. 2010. Vol. 405. Iss. 2. P. 778—784.
26. Patsera E.I., Levashov E.A., Kurbatkina V.V., Kovalev D.Yu. Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures. Ceram. Int. 2015. Vol. 41. Iss. 7. P. 8885—8893.
Review
For citations:
Potanin A.Yu., Levashov E.A., Kovalev D.Yu. DYNAMICS OF PHASE FORMATION DURING SYNTHESIS OF MAGNESIUM DIBORIDE FROM ELEMENTS IN THERMAL EXPLOSION MODE. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(3):12-22. (In Russ.) https://doi.org/10.17073/1997-308X-2016-3-12-22