EFFECT OF CARBONITRIDE TiC0,5N0,5 DOPING WITH ZIRCONIUM ON THE MECHANISM OF INTERACTION WITH Ni–Mo MELT
https://doi.org/10.17073/1997-308X-2016-3-31-42
Abstract
The paper presents a novel study of the effect of titanium carbonitride TiC0,5N0,5 doping with zirconium on the mechanism and kinetic features of contact interaction with the Ni–25%Mo melt (t = 1450 °C, vacuum 5•10–2 Pa) using the methods of electron microprobe analysis and scanning electron microscopy. It shows the basic effects of a zirconium modifying influence on dissolution, phase and structure formation processes occurring during the interaction between the Ti1–nZrnC0,5N0,5 carbonitride (n = 0,05 and 0,20) and Ni–Mo melt, and analyzes factors contributing to their occurrence. It was found that the chemical role of small zirconium additives is similar to the role of nitrogen in many respects. Experiments confirm the practical absence of zirconium and nitrogen in the K-phase composition. It was shown that the Ti0,80Zr0,20C0,5N0,5 zirconium-rich carbonitride cannot be recommended as a high melting component of a ceramic material (cermet) due to the limitations of a chemical nature.
About the Authors
V. A. ZhilyaevRussian Federation
Dr. Sci. (Tech.), Cand. Sci. (Chem.), Leading Researcher, Laboratory of physical and chemical analysis methods, ISSC UB RAS.
620990, Russia, Yekaterinburg, Pervomayskaya str., 91. E-mail: zhilyaev@ihim.uran.ru
E. I. Patrakov
Russian Federation
Cand. Sci. (Chem.), Senior Researcher, Department of Nanospintronics, IMP UB RAS.
620990, Russia, Yekaterinburg, S. Kovalevskoy str., 18. E-mail: patrakov@imp.uran.ru
References
1. Clark E.B., Roebuck B. Extending the application areas for titanium carbonitride cermets. Int. J. Refract. Metal. Hard Mater. 1992. Vol. 11. P. 23—33.
2. Ettmayer P., Kolaska H., Lengauer W., Dreyer K. Ti(C,N) cermets — metallurgy and properties. Int. J. Refract. Metal. Hard Mater. 1995. Vol. 13. P. 343—351.
3. Zhang S. Material development of titanium carbonitride-based cermets for machining application. Key Eng. Mater. 1998. Vol. 138—140. P. 521-543.
4. Xu Q., Zhang X.H., Qu W., Han J.C. Progress in research on cermets. Cemented Carbide. 2002. Vol. 19. P. 221—225.
5. Xu Y.D., Liu N., Shi M., Chao S. Research progress of TiCN cermets with nano modification. Cemented Carbide. 2005. Vol. 22. P. 112—116.
6. Cardinal S., Malchere A., Garnier V., Fantozzi G. Microstructure and mechanical properties of TiC—TiN based cermets. Int. J. Refract. Metal. Hard Mater. 2009. Vol. 27. P. 521—527.
7. Xiao J.H., Xiong W.H., Lin S.J., Qu J., Zhou M. Review on the preparation and application of Ti(C,N)-based cermet composite. Mater. Rev. 2010. Vol. 24. P. 21—27.
8. Peng Y., Miao H., Peng Z. Development of TiCN-based cermets: Mechanical properties and wear mechanism. Int. J. Refract. Metal. Hard Mater. 2013. Vol. 39. P. 78—89.
9. Kang S. Cermets. In: Comprehensive Hard Materials. Ed. V.K. Sarin. UK, Elsevier, 2014. Vol. 1. P. 139—181.
10. Rajabi A., Ghazali M.J., Daud A.R. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet — A review. J. Mater. Design. 2015. Vol. 67. P. 95—106.
11. Zhilyaev V.A., Patrakov E.I. Zakonomernosti kontaktnogo vzaimodeistviya dvoinykh karbidov (Ti1–nMe IV,V )Cn s Ni—Mo-rasplavom [Regularities of the contact in-IV,V Ti(C,N) cermet tools. Int. J. Mach. Tools Manufact. 2004. Vol. 44. P. 341—346.
12. Suzuki H., Hayashi K. Effect of addition-carbides on the properties of TiC—Ni alloy. J. Jap. Soc. Powder and Powder Metal. 1971. Vol. 17. No. 6. P. 262—266.
13. Suzuki H., Hayashi K., Yamamoto T. Effect of a small amount of additional carbides on high temperature strength of TiC—Mo2C—Ni cermets. J. Jap. Soc. Powder and Powder Metal. 1979. Vol. 26. No. 1. P. 22—26.
14. Suzuki H., Hayashi K., Kubo Y. The role of ZrC addition on high temperature strength of TiC—Mo2C—Ni cermet. J. Jap. Soc. Powder and Powder Metal. 1980. Vol. 27. No. 3. P. 77—81.
15. Terada O., Saito M., Suzuki H. The cause of formation of pores in titanium carbide based cermet with the addition of zirconium carbide. J. Jap. Soc. Powder and Powder Metal. 1993. Vol. 40. No. 11. P. 1131—1135.
16. Mun S., Kang S. Effect of HfC addition on microstructure of Ti(C,N)—Ni cermet systems. Powder Metal. 1999. Vol. 42. No. 3. P. 251—256.
17. Kim S.-H. Quantitative investigation of grain growth in carbide added (Mo2C, ZrC and WC) to TiC—Ni matrix cermets. Int. J. Eng. Manufact. 2004. Vol. 5. No. 1. P. 1—8.
18. Kwon W.T., Park J.S., Kim S.-W., Kang S. Effect of WC and group IV carbides on the cutting performance of cermets. Scripta Mater. 2005. Vol. 53. P. 129—133.
19. Kwon W.T., Park J.S., Kang S. Effect of group IV elements on the cutting characteristics of Ti(C,N) cermet tools and reliability analysis. J. Mater. Proc. Tech. 2005. Vol. 166. P. 9—14.
20. Zhang X., Liu N., Rong C. Microstructure and fracture toughness of TiC—ZrC—WC—Mo—Ni cermets. Int. J. Refract. Metal. Hard Mater. 2008. Vol. 26. P. 346—356.
21. Zhang X., Liu N. Effects of microstructure, mechanical properties and thermal shock resistance of TiC— ZrC—Co—Ni cermets. Mater. Sci. Eng. A. 2013. Vol. 561. P. 270—276.
22. Zhilyaev V.A., Patrakov E.I., Shveikin G.P. Current status and potential for development of W-free hard alloys. In: Science Hard Mater.: Proc. 2-nd Int. Conf. (Rhodes, Greece, 1984). Bristol, Boston: A Hilger Ltd, 1986. P. 1063—1073.
23. Tobioka M., Shimizu Y., Isobe K., Kitagawa N., Nomura T., Takahashi K. High toughness cermet and a process for the production of the same: Pat. 3971656 (US). 1988.
24. Lindahl P., Mainert T., Jonsson H., Andren H.-O. Microstructure and mechanical properties of a (Ti,W,Ta,Mo) (C,N)—(Co,Ni)-type cermet. Int. J. Refract. Metal. Hard Mater. 1993. Vol. 4. P. 187—204.
25. Park S., Kang S. Toughened ultrafine (Ti,W )(CN)—Ni Ni—Mo melt]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2015. No. 3. С. 25—35.
26. Park S., Kang Y.J., Kwon H.J., Kang S. Synthesis of (Ti,M1,M2)(C,N)—Ni nanocrystalline powders. Int. J. Refract. Metal. Hard Mater. 2006. Vol. 24. P. 115—121.
27. Kim S.W., Ahn S., Kang S. Effect of the complete solid-solution phase on the microstructure of Ti(CN)-based cermet. Int. J. Refract. Metal. Hard Mater. 2009. Vol. 27. P. 224—228.
28. Liu Y., Jin Y., Yu H., Ye J. Ultrafine (Ti,M)(C,N)-based cermets with optimal mechanical properties. Int. J. Refract. Metal. Hard Mater. 2011. Vol. 29. P. 104—107.
29. Chen X., Xiong W., Qu J., Yang Q., Yao Z., Huang Y. Microstructure and mechanical properties of (Ti,W,Ta)C— xMo—Ni cermets. Int. J. Refract. Metal. Hard Mater. 2012. Vol. 31. P. 56—61.
30. Chicardi E., Cordoba J.M., Sayagues M J., Cotor F.J. Inverse core-rim microstructure in (Ti,Ta)(C,N)-based cermets developed by a mechanically induced self-sustaining reaction. Int. J. Refract. Metal. Hard Mater. 2012. Vol. 33. P. 39—46.
31. Yu H., Liu Y., Jin Y., Ye J. Effect of secondary addition on the microstructure and mechanical properties of (Ti,W,Mo,V )(C,N)-based cermets. Int. J. Refract. Metal. Hard Mater. 2011. Vol. 29. P. 586—590.
32. Kang S. Ceramic and cermet having the second phase to improve toughness via phase separation from complete solid-solution phase and the method for preparing them: Pat. 8679220 (USA). 2014.
33. Zhilyaev V.A. Tverdorastvornaya priroda tugoplavkikh faz vnedreniya. Chast’ I. Fizicheskoe obosnovanie [Solid-solution nature of the refractory interstitial phases. Part I. The physical foundation]. Materialovedenie. 2012. No. 3. С. 3—9.
34. Zhilyaev V.A. Tverdorastvornaya priroda tugoplavkikh faz vnedreniya. Chast’ II. Khimicheskoe obosnovanie [Solid-solution nature of the refractory interstitial phases. Part II. The chemical foundation]. Materialovedenie. 2012. No. 4. С. 3—12.
35. Zhilyaev V.A. Poroshkovye materialy na osnove tugoplavkikh faz vnedreniya [Powder materials based on refractory interstitial phases]: Disser. of Dr. Sci. Perm’: PGTU, 2010.
36. Zhilyaev V.A. Zakonomernosti reaktsii karbidov perekhodnykh metallov IV,V grupp s nikelem [Regularities of the reaction of groups IV,V transition metals carbides with the nickel]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2014. No. 2. С. 30—36.
37. Zhilyaev V.A., Patrakov E.I. Vliyanie legirovaniya karbonitrida titana perekhodnymi metallami IV—V I grupp na vzaimodeistvie s rasplavom nikelya [Inf luence of titanium carbonitride doping by transition metals of IV—V groups on interaction with nickel melt]. Izvestiya vuzov. Poroshk. metallurgiya i funkts. pokr ytiya. 2014. No. 4. С. 30—36.
38. Roebuck B., Gee M.G. TiC and Ti (C, N) cermets microstructure. Proc. XII Int. Plansee Sem. (Reutte, Tirol, Austria, 08—12 May 1989). Bd. 2. HM 2. S. 1—29.
39. Zackrisson, U. Rolander, H.-O. Andren. Development of cermet microstructures during sintering. Metal. Mater. Trans. 2001. Vol. 32. No. 1. P. 85—94.
40. Zhilyaev V.A., Patrakov E.I., Fedorenko V.V. Khimicheskie osnovy zhidkofaznogo spekaniya TiCi TiCN-kermetov. Chast’ 1. Zakonomernosti protsessov rastvoreniya fazoi strukturoobrazovaniya v sistemakh TiC—Ni i TiC—Ni/ Mo [Chemical basis of liquid-phase sintering of TiCand TiCN-cermets. Part 1. Regularities of the processes of dissolution of phase and structure formation in the systems TiC—Ni and TiC—Ni/Mo. Vestnik PGTU. Ser. Mashinostroenie, materialovedenie. 2012. Vol. 14. No. 1. P. 32—40.
41. Zhilyaev V.A., Patrakov E.I., Fedorenko V.V. Khimicheskie osnovy zhidkofaznogo spekaniya TiCi TiCN-ker-metov. Chast’ 2. Zakonomernosti protsessov rastvoreniya fazoi strukturoobrazovaniya v sistemakh Ti(C,N)-Ni i Ti(C,N)—Ni/Mo [Chemical basis of liquid-phase sintering of TiCand TiCN-cermets. Part 2. Regularities of the processes of dissolution of phase and structure formation in the systems Ti(C,N)—Ni and Ti(C,N)—Ni/Mo]. Vestnik PGTU. Ser. Mashinostroenie, materialovedenie. 2012. Vol. 14. No. 2. P. 1—12.
42. Zhilyaev V.A., Patrakov E.I. Kinetika i mekhanizm kontaktnogo vzaimodeistviya karbonitrida titana s Ni— Mo-rasplavom [Kinetics and mechanism of the contact interaction of titanium carbonitride with the Ni—Mo melt]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2015. No. 2. С. 30—37.
43. Kowanda C., Speidel M.O. Solubility of nitrogen in liquid nickel and Ni—Xi alloys (Xi = Cr, Mo, W, Mn, Fe, Co) under elevated pressure. Scripta Mater. 2003. Vol. 48. P. 1073—1078.
44. Ershov G.S., Maiboroda V.P. Diffuziya v metallurgicheskikh rasplavakh [Diffusion in metallurgical melts]. Kiev: Naukova dumka, 1990.
45. Niki E., Masato K. The reaction of carbon with nickel-based solid solution alloy containing carbide-forming element. J. Jap. Inst. Metal. 1970. Vol. 34. No. 9. P. 879—883.
46. Borisov S.V. Sintez i issledovanie upr ugik h svoistv TixMe1–xCyNz (Me = Zr, Hf, V, Nb) tverdykh rastvorov [Synthesis and study of the elastic properties of TixMe1–xCyNz (Me = Zr, Hf, V, Nb) solid solutions]: Abstract of the dissertation of PhD. Sverdlovsk: UNTs AN SSSR. 1981.
47. Doi H. Advanced TiC and TiC—TiN based cermets. In: Proc. 2-nd Int. Conf. Science Hard Mater. (Rhodes, Greece, 1984). Bristol, Boston: A Hilger Ltd, 1986. P. 489—523.
48. Zhilyaev V.A. Kontseptsiya khimicheskogo konstruirovaniya Ti(C,N)-kermetov [Chemical design concept of Ti (C, N)-cermets]. In: Sovremennye metallicheskie materialy i tekhnologii: Proc. 11-th Int. Conf. (S.-Peterburg, 23—27 June 2015). S.-Peterburg: SPbPU, 2015. P. 1035—1041.
49. Lyubimov V.D., Elinson D.S., Shveikin G.P. Optimizatsiya ekspluatatsionnykh svoistv besvol’framovykh tverdykh splavov [Optimizing the performance properties of tungsten free hard alloys]. Poroshk. мetallurgiya. 1991. No. 11. P. 65—71.
Review
For citations:
Zhilyaev V.A., Patrakov E.I. EFFECT OF CARBONITRIDE TiC0,5N0,5 DOPING WITH ZIRCONIUM ON THE MECHANISM OF INTERACTION WITH Ni–Mo MELT. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(3):31-42. (In Russ.) https://doi.org/10.17073/1997-308X-2016-3-31-42