ULTRASOUND EFFECT ON MOLTEN METAL PROPAGATION INTO SUBMICRON PARTICLES AND THEIR AGGLOMERATES
https://doi.org/10.17073/1997-308X-2016-3-43-50
Abstract
Based on the theory of acoustic cavitation and capillary phenomena, the article considers the processes of deagglomeration and wetting of submicron particles in a metal melt under ultrasound exposure. Basic dependences were found that link the exposure time to the physical and chemical properties of particles and melt, and to acoustic radiation characteristics. Experimental and calculated time values of ultrasonic treatment of aluminum melt containing submicron particles of aluminum oxide were compared, and the obtained results were found satisfactorily fit.
About the Authors
O. B. KudryashovaRussian Federation
Dr. Sci. (Phys.-Math.), Senior Researcher, Department of physics high-energy conversion materials IPCET SB RAS.
659322, Russia, Biysk, Socialisticheskaya str., 1 . E-mail: olgakudr@inbox.ru
D. G. Eskin
United Kingdom
Cand. Sci., Prof., Department of mathematical physics, Prof., Brunel University (Brunel Centre for Advanced Solidification Technology).
634050, Russia, Tomsk, Lenin str., 36., Brunel University; Kingston Lane, Uxbridge, UB8 3PH. UK. E-mail: Dmitry.Eskin@brunel.ac.uk.
A. P. Khrustalyov
Russian Federation
Post-Graduate Student
S. A. Vorozhtsov
Russian Federation
Cand. Sci. (Tech.), Head of the Metallurgy nanotechnology laboratory
References
1. Krushenko G.G. Sredstva i tekhnologii uvelicheniya soderzhaniya nano-poroshkov v alyuminievyh modificiruyushchih prutka [Tools and technologies to increase the content of nanopowders into modifying aluminum rods]. Nanotekhnika. 2011. No. 3. P. 55—61.
2. Yang Y., Li X. Ultrasonic cavitation based nanomanufacturing of bulk aluminum matrix nanocomposites. J. Manufact. Sci. Eng. 2007. Vol. 129. P. 497—501.
3. Konovalov E.G., Germanovich I.N. Ul’trazvukovoj kapillyarnyj ehffekt [The ultrasonic capillary effect]. Doklady akademii nauk BSSR. 1962. T. 6. No. 8. P. 492—493.
4. Rozin Yu.P., Tihonova V.S, Kostyuchek M.N. Ob anomal’no bol’shih postoyannyh davleniyah v neposredstvennoj blizosti ot izluchatelya [On anomalously high constant pressure in immediate vicinity of the radiant]. Ukr. fiz. zhurn. 1975. No. 2. P. 214—220.
5. Prohorenko P.P., Dezhkunov N.V., Konovalov G.E. Ul’trazvukovoj kapillyarnyj ehffekt [The ultrasonic capillary effect]. Minsk: Nauka i tekhnika, 1981.
6. Ignat’ev I.E., Pastuhov E.A., Ignat’eva E.V. Principial’noe razlichie metodov nizkochastotnogo i ul’trazvukovogo vozdejstviya na rasplavy [The fundamental difference methods low-frequency and ultrasonic affecting on the melt]. Izv. vuzov. Tcvet. metallurgiya. 2014. No. 5. P. 7—11.
7. Vorozhtsov S.A., Eskin D.G., Tamayo J., Vorozhtsov A.B., Promakhov V.V., Averin A.A., Khrustalyov A.P. The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites. Metal. Mater. Trans. A. 2015. Vol. 46A. No. 4. P. 2870—2875.
8. Eskin G.I., Eskin D.G. Ultrasonic treatment of light alloy melts. Boca Raton: CRC Press, 2014.
9. Roldugin V.I. Fizikohimiya poverhnosti [Physical chemistry of surfaces]. Dolgoprudnyj: ID «Intellekt», 2011.
10. Sirotyuk M.G. Moshchnye ul’trazvukovye polya [Powerful ultrasonic fields]. Ed. L.D. Rozenberg. Moscow: EE Media, 2007.
11. Tzanakis I., Xu W.W., Lebon G.S.B., Eskin D.G., Pericleous K., Lee P.D. In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy. Phys. Proc. 2015. No. 70. P. 841—845.
12. Kitajgorodskij Yu.I., Drozhalova V.I. Raschet vysoty i skorosti podema zhidkosti po kapillyaram pri vozdejstvii ul’trazvukovyh kolebanij. In: Primenenie ul’trazvuka v metallurgii [Calculation of height and f luid rise velocity in capillaries when exposed to ultrasonic vibrations. In: Application of ultrasound in metallurgy]. Moscow: Metallurgiya, 1977. P. 12—16.
13. Bronin F.A. Raschet nekotorykh parametrov dinamiki kavitatsionnoi polosti v zvukovom pole [Estimation of some characteristics of dynamics of cavitation cavities in the sound field]. Trudy MISIS. 1970. P. 53—57.
14. Vorozhtsov S., Zhukov, I., Vorozhtsov A., Zhukov A., Eskin D., Kvetinskaya A. Synthesis of microand nanoparticles of metal oxides and their application for reinforcement of al-based alloys. Mater. Sci. Eng. 2015. Vol. 2015. P. 1—6. http://dx.doi.org/10.1155/2015/718207.
15. Tzanakis I., Xu W.W., Eskin D.G., Lee P.D., Kotsovinos N. In situ observation and analysis of ultrasonic capillary effect in molten aluminium. Ultrasonic Sonochemistry. 2015. No. 27. P. 72—80.
16. Timoshkin A.V. Kompleksnoe rafinirovanie i modifitsirovanie siluminov metodom vysokoskorostnoi struinoi obrabotki rasplava [Integrated the refining and modification silumins method of high-speed inject melt treatment]: Diss. Ph.D. Moscow: MATI—RSTU, 2003.
17. Eskin G.I. K usloviyam vvedeniya nesmachivaemoi tugoplavkoi fazy v rasplav alyuminiya s pomoshch’yu ul’trazvuka [To introducing conditions nonwettable infusible phase aluminum melt by ultrasound]. Tekhnologiya legkikh splavov. 1974. No. 11. P. 21—25.
Review
For citations:
Kudryashova O.B., Eskin D.G., Khrustalyov A.P., Vorozhtsov S.A. ULTRASOUND EFFECT ON MOLTEN METAL PROPAGATION INTO SUBMICRON PARTICLES AND THEIR AGGLOMERATES. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(3):43-50. (In Russ.) https://doi.org/10.17073/1997-308X-2016-3-43-50