TRY-OUT OF SPRAYING MODES AND PROPERTIES OF WEAR RESISTANT Al2O3–TiO2 FLAME COATINGS OBTAINED USING FLEXIBLE CORD MATERIAL
https://doi.org/10.17073/1997-308X-2016-3-58-66
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Al2O3–TiO2-based coating specimens were obtained using the method of oxyfuel gas spraying of a flexible cord. The paper studies the influence of process parameters and composition of the sprayed material on the structure, composition and mechanical properties of coatings. It was shown that the increase in spraying distance and feed rate of the sprayed material leads to reduction in their density. An increased concentration of the low-melting TiO2 component preconditions a decrease in coating porosity and has no significant effect on its hardness. During measuring scratching, the Al2O3–TiO2 flame coatings formed with minimal porosity (porosity ~ 3,2 %) are characterized by cohesive fracture behavior and no substrate break up at the 90 N load applied to the indenter. The studied coatings show changes in their friction factor from 0,2 to 0,78 after 2800 counterbody revolutions (44 m of rubbing path). This is due to accumulated fatigue cracks in the coating material and its subsequent cohesive fracture through formation of large fragments that serve as an abrasive.
About the Authors
A. S. AnikeevRussian Federation
Master, Department of functional nanosystems and high temperature materials, National University of Science and Technology «MISIS».
119049, Russia, Moscow, Leninsky prospect, 4. E-mail: Andrey.anikee.93@mail.ru
I. V. Blinkov
Russian Federation
Dr. Sci. (Tech.), Professor of the same Department
V. V. Ivanov
Russian Federation
General Director.
140000, Russia, Moscow region, Lyubertsy, Oktyabrsky prospect, 259а. E-mail: Valery.ivanov@oerlikon.com.
A. I. Laptev
Russian Federation
Dr. Sci. (Tech.), Associate Professor, Leading Researcher, Research Laboratory of superhard materials, NUST «MISIS»
V. S. Chelnokov
Russian Federation
Cand. Sci., Associate Professor of the same Department
I. Yu. Kuchina
Russian Federation
Senior Researcher of the same Laboratory
References
1. Baldaev L.H., Borisov V.N., Vahalin V.A., Gannochenko G.I., Zatoka A.E., IvanovA.V., Kudinov V.V., Yaroslavcev V.M. Gazotermicheskoe napylenye: Uchebnoe posobie [Thermal spraying: themanual]. Moscow: MarketDS, 2007.
2. Utenkov V.M., Zaycev A.N. Issledovanie tribotehnicheskih haracteristik perspektivnyh iznosostoikih plazmennyh pokrytyi pri trenii skolzhenia bez smazki [The study of tribotechnical characteristics of advanced wear-resistant plasma coatings on friction sliding without lubrication]. Novye materialy i tehnologii. 2013. No. 11. P. 81-89.
3. Dorfman M. Thermal spray materials. Adv. Mater. Proces. 2002. Vol. 160. P. 49-51.
4. Kudinov V.V. Plazmennye pokrytya [Plasma coating]. Moscow: Nauka, 1977.
5. Kasparova M., Houdkova S., Cubrova J. Thermally sprayed coatings for high temperature application // Proc. 21-st Int. Conf. on Metallurgy and Material (Brno, Czech Republic, 23-25. 05. 2012). P. 144-146.
6. Vargas F., Ageorges H., Fournier P. Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by f lame and plasma spraying. Surf. Coat. Technol. 2010. Vol. 205. P. 1132-1136.
7. Habib K.A., Saura J.J., Ferrer C. Comparison of f lame sprayed Al2O3/TiO2 coatings: Their microstructure mechanical properties and tribology behavior. Surf. Coat. Technol. 2006. Vol. 201. P. 1436-1443.
8. Hazar H., Ozturk U. The effects of Al2O3-TiO2 coating in a diesel engine on performance and emission of corn oil methyl ester. Renewable Energy. 2010. Vol. 35. P. 2211-2216.
9. Yilmaz S. An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3-13%TiO2 with bond coat on pure titanium substrate. Ceram. Inter. 2009. Vol. 35. P. 2017-2022.
10. Mishra N.K., Mishra S.B., Kumar R. Oxidation resistance of low-velocity oxy fuel-sprayed Al2O3-TiO2 soating on nickel-based superalloys at 800 °C. Surf. Coat. Technol. 2014. Vol. 260. P. 23-27.
11. Kenya Hamano, Chii-Shyang Hwang, Zenbe-e Nakagawa, Yutaka Ohya. Effect of TiO2 on sintering of alumina ceramic. J. Ceram. Soc. Jap. 1986. Vol. 94. R. 505-511.
12. Kang J.J., Xu B.S., Wang H.D. Inf luence of spraying parameters on the microstructure and properties of plasma-sprayed Al2O3/40%TiO2 coating. Phys. Proc. 2013. Vol. 50. P. 169-176.
13. Wank A., Reisel G., Wielage B. Diffusion barrier coatings for graphite, C/C and C/SiC racks in vacuum heat treatment or high temperature brazing processes. ITSC. 2005. Vol. 4. P. 135-138.
14. Barrios de Arenas I. Reactive sintering of aluminum titanate, sintering of ceramics - new emerging techniques. Ed. A. Lakshmanan. InTech. 2012. P. 501-526.
15. Standard ASTM E2109. Standard test methods for determining area percentage porosity in thermal sprayed coatings.
16. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992. Vol. 7. No. 6. P. 1564-1583.
17. Blinkov I.V., Volkhonskiy A.O., Belov D.S., Blinkov V.I., Schatalov R.L., Andreev V.A. Svoistva nanostructurnih keramico-metallicheskih pokrytyi TiN-Ni, poluchennyh ionno-plazmennyh vacuumno-dugovym metodom [Properties of nanostructured ceramic and metallic coatings of a TiN-Ni obtained by ion-plasma vacuum-arc method]. Izv. vuzov. Tsvet. metallurgia. 2014. No. 4. P. 51-58.
Review
For citations:
Anikeev A.S., Blinkov I.V., Ivanov V.V., Laptev A.I., Chelnokov V.S., Kuchina I.Yu. TRY-OUT OF SPRAYING MODES AND PROPERTIES OF WEAR RESISTANT Al2O3–TiO2 FLAME COATINGS OBTAINED USING FLEXIBLE CORD MATERIAL. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2016;(3):58-66. (In Russ.) https://doi.org/10.17073/1997-308X-2016-3-58-66
ISSN 2412-8767 (Online)