Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

SINTERING AS A METHOD OF PRODUCING HARD AL–SN COMPOSITES WITH A HIGH SECOND PHASE CONTENT

https://doi.org/10.17073/1997-308X-2017-1-20-28

Abstract

The structure and mechanical properties of Al–Sn composites produced by vacuum liquid-phase sintering of a mixture of aluminum (ASD-4) and tin (PО2) powders were studied. Sintering of raw briquettes with a porosity of ~15 % was carried out at a temperature of 570–620°C and a holding time of 0,5 to 2,0 hours. The tin concentration in briquettes was increased by step of 10 wt.% and reached 50 wt.%. It was found that the liquid-phase sintering method makes it possible to produce composites with a high second phase content and a continuous Al-matrix capable to prevent localization of deformation in layers of soft Sn-phase under external loading. The optimal composite sintering mode corresponds to a holding time of 1 hour at a temperature of 600 °C. The increase of tin proportion leads to a decrease of the aluminum matrix binding, wherein the matrix remains continuous when the tin content does not exceed 50 wt.% (27 vol.%). Evaluation of mechanical properties of sintered materials was carried out by the compression test. The strength of produced sintered composite materials (CM) is described by an ideal mixture formula: σКМ = σAlfAl + σSnfSn, where σSn is a constant, because tin is not hardened, and σAl value is determined by the compression curve of pure aluminum.


About the Authors

N. M. Rusin
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Science (ISPMS SB RAS)
Russian Federation
Cand. Sci. (Tech.), senior research associate of Laboratory of Physics of nanostructured functional materials


A. L. Skorentsev
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Science (ISPMS SB RAS) Institute of Physics and Technology of National Research Tomsk Polytechnic Universit
Russian Federation
junior researcher of Laboratory of Physics of nanostructured functional materials of ISPMS SB RAS, engineer of Institute of Physics and Technology of National Research Tomsk Polytechnic University


References

1. Bushe N.А., Dvoskina V.A., Rakov K.M., Gulyaev A.S. Podshipniki iz aluminievykh splavov [Bearings of aluminum alloys]. Moscow: Transport, 1974.

2. Rusin N.M., Ivanov K.V. Osobennosti plasticheskogo techeniya poroshkovogo splava Al—40Sn pri extruzii [Features of plastic flow of powder alloy Al—40Sn during extrusion]. Izvestiya vuzov. Tsvetnaya metallurgiya. 2011. No. 2. P. 48—54.

3. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem [The diagrams of binary metallic systems]. Ed. N.P. Lyakishev. Vol. 1. Moscow: Mashinostroenie, 1996.

4. Straumal B., Molodov D., Gust W. Grain boundary wetting phase transitions in the Al—Sn and Al—Sn—Pb systems. Mater. Sci. Forum. 1996. Vols. 207—209. P. 437—440.

5. Straumal B., Risser S., Sursaeva V., Chenal B., Gust W. Grain grows and grain boundary wetting phase transitions in the Al—Ga and Al—Sn—Ga alloys of high purity. J. Physique IV France. 1995. Vol. 5. P. 233—241.

6. Evans E.B., McCormick M.A., Kennedy S.L., Erb U. The effect of inclusion size on grain boundary wetting in A1— Sn alloys. Appl. Phys. A. 1987. Vol. 42. P. 269—272.

7. Harris S.J., McCartney D.G., Horlock A.J., Porrin C. Production of ultrafine microstructure in Al—Sn, Al— Sn—Cu and Al—Sn—Cu—Si alloys for use in tribological application. Mater. Sci. Forum. 2000. Vols. 331—337. P. 519—526.

8. De Rosa H., Cardús G., Broitman E., Zimmerman R. Structural properties of AlSn thin films deposited by magnetron sputtering. J. Mater. Sci. Lett. 2001. Vol. 20. P. 1365—1367.

9. Kotadia H.R., Patel J.B., Fan Z., Doernberg E., Schmid-Fetzer R. Solidification and processing of aluminum based immiscible alloys. In: Aluminium alloys: Fabrications, characterization and applications II. Eds. W. Yin, S.K. Das, Z. Long. TMS, 2009. P. 81—86.

10. Valizadeh A.R., Kiani-Rashid A.R., Avazkonandeh-Gharavol M.H., Karimi E.Z. The Influence of cooling rate on the microstructure and microsegregation in Al—30Sn binary alloy. Metallogr. Microstruct. Anal. 2013. Vol. 2. P. 107—112.

11. German R.M. Powder metallurgy and particulate materials processing. Princeton: Metal Powder Industries Federation, 2005.

12. Rusin N.M., Borisov S.S. Makrostrukturnye kharakteristiki poroshkovoi pressovki posle RKUP [Microstructural characteristics of powder compact after ECAP]. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokryti-ya. 2011. No. 4. P. 25—30.

13. Aref’ev B.A., Kuleshov V.V., Panovko V.M., Rebrov A.V., Savitskaya L.I. Kompaktirovanie bystrozakristallizovannogo alyuminiya ekstruziei [Compacting of quickly crystallized aluminum by extrusion]. In: Plasticheskaya deformatsiya konstruktsionnykh materialov [Plastic deformation of structural materials]. Moscow: Mir, 1988. P. 146—158.

14. Chernyavskii К.S. Stereologiya v metallovedenii [Stereology in the metal science]. Moscow: Metallurgiya, 1977.

15. Rusin N.M., Skorentsev A.L., Mishin I.P. Evolution of structure and properties of Al—Sn composites under deformation. Inorganic Materials: Applied research. 2015. Vol. 6. No. 5. P. 427—437.

16. Rusin N.M., Skorentsev A.L., Kolubaev E.A. Structure and tribotechnical properties of Al—Sn alloys prepared by the method of liquid-phase sintering. Adv. Mater. Res. 2014. Vol. 1040. P. 166—170.


Review

For citations:


Rusin N.M., Skorentsev A.L. SINTERING AS A METHOD OF PRODUCING HARD AL–SN COMPOSITES WITH A HIGH SECOND PHASE CONTENT. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(1):20-28. (In Russ.) https://doi.org/10.17073/1997-308X-2017-1-20-28

Views: 1074


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)