Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

FEATURES OF PRODUCTION AND HIGH-TEMPERATURE OXIDATION OF SHS-CERAMICS BASED ON ZIRCONIUM BORIDE AND ZIRCONIUM SILICIDE

https://doi.org/10.17073/1997-308X-2017-1-29-41

Abstract

The paper is dedicated to the study of kinetics and combustion mechanism of reaction mixtures in Zr–Si–B and Zr–B systems, production of compact ceramic materials in a process of SHS compaction, as well as studying their heat resistance. The paper demonstrates that temperature and combustion speed dependencies of compounds in the Zr–Si–B system on the initial temperature (T0) are linear, i.e. with a rise in T0, staging of chemical reactions of zirconium diboride and disilicide formation does not change. The paper calculates values of the effective SHS process activation energy, which demonstrate the crucial role of the reaction interaction between zirconium and boron and silicon in a melt. The paper studies the staging of chemical reactions in a mixture Zr–Si–B combustion wave: initially, the ZrB2 phase is formed from the melt by crystallization, then the ZrSi2 phase appears with a delay of 0,5 s and 1 second later unreacted Si crystallizes. The paper studies the phase composition of synthesis products with diboride ZrB2 as a main component and zirconium disilicide ZrSi2, Si and boride ZrB12 depending on the initial reaction charge composition. The new compact samples characterized by high hardness and low residual porosity were produced in the process of power SHS compaction. Formation of oxide films SiO2–ZrO2–B2O3 along with the complex oxide ZrSiO4, which serve as an effective diffusion barrier and reduce the oxidation rate, occurs on the surface of SHS-samples in response to their high-temperature oxidation and depending on their composition.

 

 

About the Authors

I. V. Iatsyuk
National University of Science and Technology (NUST) «MISIS», Scientific-education Centre of SHS MISIS–ISMAN
Russian Federation
postgraduate student of the Department of powder metallurgy and functional coatings (PM&FC)
of National University of Science and Technology (NUST) «MISIS», engineer of Scientific-education Centre of SHS MISIS–ISMAN


Yu. S. Pogozhev
National University of Science and Technology (NUST) «MISIS», Scientific-education Centre of SHS MISIS–ISMAN
Russian Federation

Cand. Sci. (Tech.), associate prof. of Department of PM&FC, senior researcher of Scientific-education Centre of SHS MISIS–ISMAN



E. A. Levashov
National University of Science and Technology (NUST) «MISIS», Scientific-education Centre of SHS MISIS–ISMAN
Russian Federation

Dr. Sci. (Tech.), prof., acad. of Russian Academy of Natural Science, head of the Department of PM&FC, head of Scientific-education Centre of SHS MISIS–ISMAN



A. V. Novikov
National University of Science and Technology (NUST) «MISIS», Scientific-education Centre of SHS MISIS–ISMAN
Russian Federation

Cand. Sci. (Tech.), senior researcher of Scientific-education Centre of SHS MISIS–ISMAN



N. A. Kochetov
Scientific-education Centre of SHS MISIS–ISMAN
Russian Federation

Cand. Sci. (Phys.-Math.), senior researcher of the Laboratory of dynamics of microheterogeneous processes of ISMAN



D. Yu. Kovalev
Scientific-education Centre of SHS MISIS–ISMAN
Russian Federation

and. Sci. (Tech.), head of Laboratory of X-ray diffraction studies, ISMAN



References

1. Sha J.J., Li J., Wang S.H., Wang Y.C., Zhang Z.F., Dai J.X. Toughening effect of short carbon fibers in the ZrB2—ZrSi2 ceramic composites. Mater. Design. 2015. Vol. 75. P. 160—165.

2. Paul A., Jayaseelan D.D., Venugopal S., Zapata-Solvas E., Binner J., Vaidhyanathan B., Heaton A., Brown P., Lee W.E. UHTS composites for hypersonic applications. Am. Ceram. Soc. Bull. 2012. Vol. 91. P. 22—29.

3. Czelusniak T., Amorim F.L., Higa C.F., Lohrengel A. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. Int. J. Adv. Manuf. Technol. 2014. Vol. 72. P. 1503—1512.

4. Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Eller-by D.T. Highstrength zirconium diboride-based ceramics. J. Am. Ceram. Soc. 2004. Vol. 87. P. 1170—1172.

5. Sciti D., Guicciardi S., Silvestroni L. SiC chopped fibers reinforced ZrB2: effect of the sintering aid. Scr. Mater. 2011. Vol. 64. P. 769—772.

6. Sciti D., Silvestroni L., Saccone G., Alfano D. Effect of different sintering aids on thermo-mechanical properties and oxidation of SiC fibers-reinforce ZrB2 composites. Mater. Chem. Phys. 2013. Vol. 137. P. 834—842.

7. Guo S.Q., Kagawa Y., Nishimura T. Mechanical behavior of two-step hotpressed ZrB2-based composites with ZrSi2. J. Eur. Ceram. Soc. 2009. Vol. 29. P. 787—794.

8. Wang H.L., Wang C.A., Yao X.F., Fang D.N. Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 2007. Vol. 90. P. 1992—1997.

9. Pastor H. Metallic borides: preparation of solid bodies — sintering methods and properties of solid bodies. In: Boron and refractory borides. Ed. V.I. Matkovich. N.Y.: Springer-Verlag, 1977. P. 454—493.

10. Silvestroni L., Sciti D. Densification of ZrB2—TaSi2 and HfB2—TaSi2 ultrahigh-temperature ceramic composites. J. Am. Ceram. Soc. 2011. Vol. 94. P. 1920—1930.

11. Sciti D., Guicciardi S., Silvestroni L. Are short Hi-Nicalon SiC fibers a secondary or a toughening phase for ultra-high temperature ceramics. Mater Design. 2014. Vol. 55. P. 821—829.

12. Yang F.Y., Zhang X.H., Han J.C., Du S.Y. Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics. Mater. Design. 2008. Vol. 29. P. 1817—1820.

13. Lin J., Zhang X.H., Wang Z., Han W.B., Jin H. Microstructure and mechanical properties of hot-pressed ZrB2—SiC—ZrO2 ceramics with different sintering temperatures. Mater. Design. 2012. Vol. 34. P. 853—856.

14. Sha J.J., Wei Z.Q., Li J., Zhang Z.F., Yang X.L., Zhang Y.C., Dai J.X. Mechanical properties and toughening mechanism of WC-doped ZrB2—ZrSi2 ceramic composites by hot pressing. Mater. Design. 2014. Vol. 62. P. 199—204.

15. Sciti D., Guicciardi S., Bellosi A. Properties of a pressureless-sintered ZrB2—MoSi2 ceramic composite. J. Am. Ceram. Soc. 2006. Vol. 7. P. 2320—2322.

16. Guo S.Q., Kagawa Y., Nishimura T., Tanaka H. Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scr. Mater. 2008. Vol. 58. P. 579—582.

17. Yu-Lei Zhang, He-Jun Li, Zhi-Xiong Hu, Jin-Cui Ren, Ke-Zhi Li. Microstructure and oxidation resistance of Si— Mo—B coating for C/SiC coated carbon/carbon composites. Corros. Sci. 2013. Vol. 72. P. 150—155.

18. Feng T., Li H.J., Shi X.H., Yang X., Li Y.X., Yao X.Y. Sealing role of B2O3 in MoSi2—CrSi2—Si/B-modified coating for C/C composites. Corros. Sci. 2012. Vol. 60. P. 4—9.

19. Grigoriev O., Galanov B., Lavrenko V., Panasyuk A., Ivanov S., Koroteev A., Nickel K. Oxidation of ZrB2—SiC—ZrSi2 ceramics in oxygen. J. Eur. Ceram. Soc. 2010. Vol. 30. P. 2397—2405.

20. Silvestroni L., Landi E., Bejtka K., Chiodoni A., Sciti D. Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers. J. Eur. Ceram. Soc. 2015. Vol. 35. P. 4377—4387.

21. Silvestroni L., Meriggi G., Sciti D. Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros. Sci. 2014. Vol. 83. P. 281—291.

22. Makarov A.V., Bagarat’yan N.V., Zbezhneva S.G., Aleshko-Ozhevskaya L.A., Georgobiani T.P. Ionizatsiya i frag-mentatsiya molekul B2O2 i BO pri elektronnom udare [The ionization and fragmentation of the molecules B2O2 and BO at electronic blow]. Vestnik MGU. Ser. Khimiya. 2000. Vol. 41. No. 4. P. 227—230.

23. Eremina E.N., Kurbatkina V.V., Levashov E.A., Rogachev A.S., Kochetov N.A. Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo—10%B mixture. Chem. Sustain. Develop. 2005. Vol. 13. P. 197—204.

24. Khanraa A.K., Pathak L.C., Godkhindi M.M. Double SHS of ZrB2 powder. J. Mater. Proc. Technol. 2008. Vol. 202. P. 386—390.

25. Levashov E.A., Rogachev A.S., Kurbatkina V.V., Maksimov M., Yukhvid V.I. Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Promissory materials and processes of self-propagating high-temperature synthesis]. Moscow: MISIS, 2011.

26. Levashov E.A., Pogozhev Yu.S., Potanin A.Yu., Kochetov N.A., Kovalev D.Yu., Shvyndina N.V., Sviridova T.A. Self-propagating high-temperature synthesis of advanced ceramics in the Mo—Si—B system: Kinetics and mechanism of combustion and structure formation. Ceram. Int. 2014. Vol. 40. P. 6541—6552.

27. Rogachev A.S., Mukasyan A.S. Combustion for materials synthesis. N.Y.: Taylor and Francis, 2015.

28. Pogozhev Yu.S., Potanin A.Yu., Levashov E.A., Kovalev D.Yu. The features of combustion and structure formation of ceramic materials in the Cr—Al—Si—B system. Ceram. Int. 2014. Vol. 40. P. 16299—16308.

29. Bertolino N., Anselmi-Tamburini U., Maglia F., Spinolo G., Munir Z.A. Combustion synthesis of Zr—Si intermetallic compounds. J. Alloys Compd. 1999. Vol. 288. P. 238—248.

30. Levashov E.A., Kurbatkina V.V., Rogachev A.S., Kochetov N.A., Patsera E.I., Sachkova N.V. Characteristic properties of combustion and structure formation in the Ti—Ta— C system. Russ. J. Non-Ferr. Met. 2008. Vol. 49. P. 404—413.

31. Patsera E.I., Levashov E.A., Kurbatkina V.V., Kovalev D.Yu. Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures. Ceram. Int. 2015. Vol. 41. P. 8885—8893.

32. Yu Y., Luo R., Xiang Q., Zhang Y., Wanga T. Antioxidation properties of a BN/SiC/Si3N4—ZrO2—SiO2 multilayer coating for carbon/carbon composites. Surf. Coat. Technol. 2015. Vol. 277. P. 7—14.

33. Liu J., Cao L.-Y., Huang J.-F., Xin Y., Yang W.-D., Fei J., Yao C.-Y. A ZrSiO4/SiC oxidation protective coating for carbon/carbon composites. Surf. Coat. Technol. 2012. Vol. 206. P. 3270—3274.


Review

For citations:


Iatsyuk I.V., Pogozhev Yu.S., Levashov E.A., Novikov A.V., Kochetov N.A., Kovalev D.Yu. FEATURES OF PRODUCTION AND HIGH-TEMPERATURE OXIDATION OF SHS-CERAMICS BASED ON ZIRCONIUM BORIDE AND ZIRCONIUM SILICIDE. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(1):29-41. (In Russ.) https://doi.org/10.17073/1997-308X-2017-1-29-41

Views: 1047


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)