FORMATION OF AMORPHOUS STRUCTURES AND THEIR CRYSTALLIZATION IN CU–TI SYSTEM BY HIGH-ENERGY BALL MILLING
https://doi.org/10.17073/1997-308X-2017-2-14-21
Abstract
The paper presents the research findings on the formation of amorphous structures in the Cu–Ti system and their subsequent crystallization by highenergy ball milling (HEBM). Copper powders (PMS-V grade with an average particle size d = 45÷100 μm, GOST 4960-75) and titanium powders (PM99.95, d = 2,0÷4,5 μm, TU 48-19-316-80) were chosen as original components for obtaining Cu-Ti amorphous powders. The high-energy ball milling of Cu + Ti powder mixtures was carried out using the Activator- 2S laboratory planetary ball mill (disc rotation rate – 694 rpm; rotation rate of drums – 1388 rpm) for 1 to 30 minutes. The surface morphology and the micro-, nano- and atomic-crystalline structure of activated Cu + Ti powder mixtures were studied by X-ray diffraction (XRD) methods using the DRON-3M, diffractometer by scanning electron microscopy using the Zeiss Ultra + + microscope (Germany) with energy dispersive analysis, and by high resolution transmission electron microscopy (TEM) using the Titan microscope (USA). Thermal characteristics of phase transformations (temperature, heat of reaction, amorphouscrystalline transition) were determined by differential scanning calorimetry using the DSC 204 F1 instrument in a linear heating mode of up to450 °Cat a rate of 20 deg/min. Amorphous Cu-Ti powders were obtained by using high-energy ball milling for 20 min. According to X-ray diffraction data, the fraction of the amorphous phase in the material was 93 %. TEM-based studies showed that the material consisted mainly of an amorphous phase with an insignificant content of nanocrystalline regions sized from 2 to 8 μm. It was found that crystallization of the Cu–Ti amorphous phase occurred in the temperature range of 336–369 °C with the heat of reaction equal to 79,78 J/g.
About the Authors
N. F. ShkodichRussian Federation
Cand. Sci. (Phys.-Math.), Senior researcher of Laboratory «Dynamics of microheterogeneous Processes»
(142432, Russia, Moscow reg., Chernogolovka, Academician Osipyan str., 8)
A. S. Rogachev
Russian Federation
Dr. Sci. (Phys.-Math.), Prof., Head of Laboratory «Dynamics of microheterogeneous Processes»
S. G. Vadchenko
Russian Federation
Cand. Sci. (Phys.-Math.), Leading researcher of Laboratory «Dynamics of microheterogeneous Processes»
I. D. Kovalev
Russian Federation
Cand. Sci. (Phys.-Math.), Researcher of Laboratory of X-Ray investigation
A. A. Nepapushev
Russian Federation
Cand. Sci. (Tech.), Engineer of SRC «Construction ceramic nanomaterials»
(119049, Russia, Moscow, Leninkii pr., 4)
S. S. Rоuvimov
United States
Cand. Sci. (Tech.), Research associate professor of Department of electrical engineering
(46556, SA, Indiana, Notre Dame)
A. S. Mukasyan
Russian Federation
Dr. Sci. (Phys.-Math.), Prof., Director of SRC «Construction ceramic nanomaterials» NUST «MISIS», Professor of Notre Dame University
References
1. Willens R.H., Klement W., Duwez P. Continuous series of metastable solid solutions in silver-copper alloys. J. Appl. Phys. 1960. Vol. 31. P. 1136—1137.
2. Судзуки К., Худзимори Х., Хасимото К. Аморфные металлы: Пер. с япон. М.: Металлургия, 1987; Sudzuki K., Hudzumori H, Hasimoto K. Amorfnie metalli [Amorphous metals]. Moscow: Metallurgiya, 1987.
3. Davidson M., Roberts S., Castro G., Dillon R.P., Kunz A., Kozachkov H., Demetriou M.D., Johnson W.L., Nutt S., Hofmann D.C. Investigating amorphous metal composite architectures as spacecraft shielding. Adv. Eng. Mater. 2013. Vol.15. Iss. 12. P. 27—33.
4. Johnson W.L. Bulk metallic glasses — a new engineering material. Metals and Alloys. 1996. Vol. 1. P. 383—386.
5. Золотухин И.В. Аморфные металлические материалы // Соросовский образоват. журн. 1997. No. 4. С. 73—78; Zolotuhin I.V. Amorfnie metallicheskie materiali [Amorphous metallic materials]. Sorosovskiy obrazovatelnyi zhurnal. 1997. No. 4. P. 73—78.
6. Поздняков В.А. Физическое материаловедение наноструктурированных материалов. М.: Изд. дом. МГИУ, 2007; Pozdnyakov V.A. Fiziheskoe materialovedenie nanostrukturirovannih materialov [Physical materials science of nanostructured materials]. Мoscow: Izd. dom. MGIU, 2007.
7. Brunelli K., Dabala M., Frattini R., Sandona G., Calliari I. Electrochemical behaviour of Cu—Zr and Cu—Ti glassy alloys. J. Alloys and Comp. 2001. Iss. 317-318. P. 595—602.
8. Pineda E., Bruna P., Ruta B., Gonzalez-Silveira M., Crespo D. Relaxation of rapidly quenched metallic glasses: Effect of the relaxation state on the slow low temperature dynamics. Acta Mater. 2013. Vol. 61. P. 3002—3011.
9. Kobayashi A., Yano S., Kimura H., Inoue A. Febased metallic glass coatings produced by smart plasma spraying process. Mater. Sci. Eng. B. 2008. Vol. 148. Iss. 13. P.110—113.
10. Marikani A. Engineering physics. 2-nd ed. New Delhi: Ray Press, 2013. P. 490.
11. Shekhar K. M., Nageswar S. Electrodeposition of copper on Cu—Zr metallic glass substrates. J. App. Electrochem. 1988. Vol. 18. Iss. 2. P. 200—204.
12. Blanquet E., Mantoux A., Pons M., Vahlas C. Chemical vapor deposition and atomic layer deposition of amorphous and nanocrystalline metallic coatings: towards deposition of multimetallic films. J. Alloys and Comp. 2010. Vol. 504. P. 422—424.
13. Sun H., Flores K.M. Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate. J. Mater. Res. 2008. Vol. 23. Iss. 10. P. 2692—2703.
14. Koch C., Cavin O. B., McKamey C. G., Scarbrough J.O. Preparation of amorphous Ni60Nb40 by mechanical alloying. Appl. Phys. Lett. 1983. Vol. 43. Р. 1017—1019.
15. Politis C. Nanostructured and amorphous materials by mechanical alloying. Chinese Phys. 2001. Vol. 10. P. 31—35.
16. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Moskovskikh D.O., Sachkova N.V., Rouvimov S., Mukasyan A.S. Bulk Cu—Cr nanocomposites by high-energy ball milling and spark plasma sintering. J. Alloys and Comp. 2014. Vol. 617. P. 39—46
17. Pourfereidouni A., Akbari G.H. Development of nano-structure Cu—Ti alloys by mechanical alloying process. Adv. Mater. Res. 2014. Vol. 829. P. 168—172
18. Politis C., Johnson W.L. Preparation of amorphous TiCux (0,10 < x < 0,87) by mechanical alloying. Appl. Phys. 1986. Vol. 60. Iss. 3. P. 1147—1151.
19. Molnar A., Domokos L., Katona T., Martinek T., Mulas G., Cocco G., Bertoti I, Szepvolgyi J. Activation of amorphous Cu—M (M—Ti, Zr, or Hf) alloy powders made by mechanical alloying. Mater. Sci. Eng. 1997. Iss. 226-228. P. 1074—1078.
20. Savin V.V., Chaika V.A. Formation of amorphous powders of alloys of the Cu—Ti system with mechanical activation of powder mixtures. Powder Metallurgy and Metal Ceramics. 1998. Vol. 37. Iss. 7. P. 448—457.
21. Guwer A., Nowosielski R., Borowski A., Babilas R. Fabrication of copper-titanium powders prepared by mechanical alloying. Indian J. Eng. Mater. Sci. 2014. Vol. 21. P. 265—271.
22. Hirooka Y. Thermal decomposition of titanium hydride and its application to low pressure hydrogen control. J. Vacuum Sci. Technol. A. 1984. Vol. 2. P. 16—21.
23. Lehmhus D., Rauch G. Tailoring titanium hydride decomposition kinetics de annealing in various atmospheres. Adv. Eng. Mater. 2004. Vol. 6. Iss. 5. P. 313—330.
24. Duan G., Wiest A., Lind M.L., Kahl A., Johnson W.L. Lightweight Ti-based bulk metallic glasses excluding late transition metals. Scripta Mater. 2008. Vol. 58. P. 465—468.
25. Baricco M., Battezzati L., Soletta I., Schiffini L., Cowlam N. Thermal behavior of Cu—Ti and Cu—Ti—H amorphous powders prepared by ball milling. Mater. Sci. Eng. A. 1991. Vol. 134. P. 1398—1401.
26. Rogachev A.S., Shkodich N.F., Vadchenko S.G., Baras F., Kovalev D.Yu., Rouvimov S., Nepapushev A.A., Mukasyan A.S. Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture. J. Alloys and Comp. 2013. Vol. 577. P. 600—605.
Review
For citations:
Shkodich N.F., Rogachev A.S., Vadchenko S.G., Kovalev I.D., Nepapushev A.A., Rоuvimov S.S., Mukasyan A.S. FORMATION OF AMORPHOUS STRUCTURES AND THEIR CRYSTALLIZATION IN CU–TI SYSTEM BY HIGH-ENERGY BALL MILLING. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(2):14-21. (In Russ.) https://doi.org/10.17073/1997-308X-2017-2-14-21