ON THE POSSIBILITY OF OBTAINING HARD ALLOYS FROM MIXTURES OF CARBIDE POWDERS AND METALS BY EXPLOSIVE COMPACTING WITHOUT SINTERING
https://doi.org/10.17073/1997-308X-2017-2-22-30
Abstract
The paper presents experimental results on the possibility of obtaining consolidated powdered hard alloys by the method of explosive compacting without subsequent sintering. Tungsten carbide (WC), chromium (Cr3C2) and silicon carbide (SiC) were used as main carbides of alloys; titanium, nickel and copper acted as binder metals. The compression pressure of the powder mixture in shock waves during explosive compacting varied in the range from 5 to 16 GPa, the heating temperature was from 250 to 950°C. The structure, chemical and phase compositions were studied using optical (Axiovert 40MAT, Carl Zeiss), raster (FEI Versa 3D) and transmission (FEI Titan 80-300, Tecnai G2 20F) electron microscopes. The paper demonstrates that powder compositions with a titanium binder are compacted much better than mixtures with copper or nickel. The hardness of materials after explosive compacting reaches 1200 HV. The paper determines a temperature range corresponding to ((0,35÷0,4)tmelt (where tmelt is the absolute melting point of the main carbide of the alloy), transition through which changes the fracture pattern of samples from intercrystalline to transcrystalline. The paper determines that this is due to the formation of strong boundaries between carbide particles and the metal matrix, which constitute interlayers with a thickness of the order of 80–100 nm having its own crystalline structure different from the structure of main components of the alloy.
About the Authors
A. V. KrokhalevRussian Federation
Dr. Sci. (Eng.), Assoc. prof., Department of materials technology
(400005, Russia, Volgograd, Lenin av., 28)
V. O. Kharlamov
Russian Federation
Cand. Sci. (Tech.), Lead engineer, Shared Equipment Center
M. A. Tupitsin
Russian Federation
Postgraduate student, Department of welding equipment and technology
S. V. Kuzmin
Russian Federation
Dr. Sci. (Eng.), Prof., Department of welding equipment and technology
V. I. Lysak
Russian Federation
Dr. Sci. (Eng.), Prof., Corresponding Member of RAS, Rector of VSTU
References
1. Schwarzkopf P., Kieffer R. Cemented сarbides. Macmillan, 1960.
2. Groover M.P. Fundamentals of modern manufacturing: materials, processes and systems. 4-th ed. John Wiley & Sons, 2010.
3. Gourdin W.H. Dynamic consolidation of metal powders. Progr. Mater. Sci. 1986. Vol. 30. P. 39—80.
4. Prummer R.A. Explosive compaction of powders, principle and prospects. Materialwissenschaft und Werkstofftechnik. 1989. Bd. 20. S. 410—415.
5. Murr L.E., Staudhammer K.P., Meyers M.A. Metallurgical applications of shock-wave and high-strain-rate phenomena. N.Y., 1986.
6. Prummer R.A., Balakrishna Bhat T., Siva Kumar K., Hokamoto K. Explosive compaction of powders and composites. Enfield, 2006.
7. Krokhalev A.V., Kharlamov V.O., Kuz’min S.V., Lysak V.I. Features for formation of solid alloys of chromium carbide and titanium powder mixtures by explosion energy. Russ. J. Non-Ferr. Met. 2013. Vol. 54. P. 522—526.
8. Kayuk V.G., Masljuk V.A., Kostenko A.D. Tribological properties of hard alloys based on chromium carbide. Powder Metall. Met. Ceram. 2003. Vol. 42. P. 257—261.
9. Hussainova I., Jasiuk I., Sardela M., Antonov M. Micromechanical properties and erosive wear performance of chromium carbide based cermets. Wear. 2009. Vol. 267. P. 152—159.
10. Da-Yung Wang, Ko-Wei Weng, Chi-Lung Chang, Wei-Yu Ho Synthesis of Cr3C2 coatings for tribological applications. Surf. Coat. Technol. 1999. Vol. 120. P. 622—628.
11. Petrova A.M., Shtern M.B. The influence of nanostructural oxide films on wear-resistance of titanium materials. In: Carbon nanomaterials in clean energy hydrogen systems. Netherlands, Springer, 2008. P. 851—856.
12. Krokhalev A.V., Kharlamov V.O., Kuz’min S.V., Lysak V.I. Komp’yuternyy raschot parametrov szhatiya pri nanesenii poroshkovykh pokrytiy vzryvom [Computer calculation of parameters of compression at drawing of powder coverings by explosion]. Izvestiya VolgGTU. Ser. Svarka vzryvom i svoystva svarnykh soyedineniy. 2010. No. 5. P. 110—116.
13. Krasulin Yu.L. Nazarov G.Z. Mikrosvarka davleniem [Pressure microwelding]. Moscow: Metallurgia, 1976.
14. Krasulin Yu.L. Dislocations as active centers in topochemical reactions. Theor. Exper. Chem. 1969. Vol. 3. No. 1. P. 31—35.
15. Krasulin Yu.L., Shorshorov M.Kh. O mekhanizme obrazovaniya soedineniya raznorodnykh materialov v tverdom sostoyanii [The mechanism of formation of a compound of dissimilar materials in the solid state]. Fizika i khimiya obrabotki materialov. 1967. No. 1. P. 89—97.
16. Ushanova E.A., Nesterova E.V., Petrov S.N., Rybin V.V., Kuz’min S.V., Greenberg B.A. Razrabotka tekhnologii podgotovki obraztsov dlya elektronno-mikroskopicheskikh issledovanii nanokristallicheskikh zon stsepleniya v raznorodnykh soedineniyakh na osnove metodov ionnoi polirovki [Development of a technology for preparation of samples for electron microscopic studies of nanocrystalline bonding zones in dissimilar compounds based on ion-polishing method]. Voprosy materialovedeniya. 2011. No. 1. C. 110—117.
17. Focused ion beam systems: Basics and applications. Ed. By Nan Yao. Cambridge: University Press, 2007.
18. Shabashov V.A., Filippova N.P., Ovchinnikov V.V., Mulyukov R.R., Valiev R.Z. Determination of the «grain-boundary phase» in submicrocrystalline iron by mössbauer spectroscopy. Phys. Met. Metallograph. 1998. Vol. 85. No.3. P. 318—326.
19. Shevchenko V.Ya. Khasanov O.L., Yur’ev G.S., Pokholkov Yu.P. Observation of structure features of zirconium dioxide ultradispersed state probes by synchrotron radiation diffraction. Doklady Akademii Nauk. 2001. Vol. 377. No. 6. P. 797—799.
20. Lysak V.I., Kuz’min S.V., Krokhalev A.V., Grinberg B.A. Structure of boundaries in composite materials obtained using explosive loading. Phys. Met. Metallograph. 2013. Vol. 114. P. 947—952.
21. Haubold T., Birringer R., Lengeler B., Gleiter H. Exafs studies of nanocrystalline materials exhibiting a new solid state structure with randomly arranged atoms. Phys. Lett. A. 1989. Vol. 135. P. 461—466.
22. Song J., Kostka A., Veehmayer M., Raabe D. Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Mater. Sci. Eng. A. 2011. Vol. 528. P. 2641—2647.
Review
For citations:
Krokhalev A.V., Kharlamov V.O., Tupitsin M.A., Kuzmin S.V., Lysak V.I. ON THE POSSIBILITY OF OBTAINING HARD ALLOYS FROM MIXTURES OF CARBIDE POWDERS AND METALS BY EXPLOSIVE COMPACTING WITHOUT SINTERING. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(2):22-30. (In Russ.) https://doi.org/10.17073/1997-308X-2017-2-22-30