Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

CHANGE IN STRENGTH, HARDNESS AND CRACKING RESISTANCE IN TRANSITION FROM MEDIUM-GRAINED TO ULTRAFINE HARD ALLOY

https://doi.org/10.17073/1997-308X-2017-2-39-46

Abstract

The paper studies the microstructure and mechanical characteristics of samples of medium-grained (WC–8Co), submicron (WC– 8Co–1Cr3C2) and ultrafine (WC–8Co–0,4VC–0,4Cr3C2) hard alloys produced by liquid-phase sintering of powders of appropriate dispersity. The paper shows that a decrease in the average grain diameter from 1,65 to 0,37 μm leads to an increase in hardness of resulting alloys from 1356 to 1941 HV. At the same time, the cracking resistance decreases from 19,0 to 8,5 MPa·√ —m and strength decreases from 2080 MPa to 1210 MPa. Comparison with the literature data showed that alloys considered in this paper are highly competitive in hardness and crack resistance with analogues produced by sintering under pressure, hot pressing, electric spark and induction sintering. At the same time, the bending strength of alloys produced by liquid phase sintering was 1,5–2,5 times lower than for alloys produced by pressure sintering or pressing, due to the presence of pores with a maximum diameter estimated at 40 μm. The paper analyses obtained results and the literature data against the theoretical regularities. It is shown that in general, dependences of hardness, cracking resistance and strength on the average grain diameter of produced alloys and their analogues correspond to conventional regularities based on the Hall–Petch and Orovan–Griffiths laws, despite the existence of theoretical prerequisites for deviating from them. 

About the Authors

M. I. Dvornik
Khabarovsk Scientific Center, Far Eastern Branch of Russian Academy of Sciences
Russian Federation
Cand. Sci. (Tech.), Senior researcher of Laboratory of composite materials


A. V. Zaitsev
Khabarovsk Scientific Center, Far Eastern Branch of Russian Academy of Sciences
Russian Federation
Cand. Sci. (Tech.), Researcher of Laboratory of composite materials


References

1. Григорьев С.Н., Табаков В.П., Волосова М.А. Технологические методы повышения износостойкости контактных площадок режущего инструмента. Старый Оскол: «ТНТ», 2011; Grigor’ev S.N., Tabakov V.P., Volosova M.A. Tekhnologicheskie metody povysheniya iznosostoikosti kontaktnykh ploshchadok rezhushchego instrumenta [Technological methods to improve the wear resistance of the contact pads of the cutting tool]. Staryi Oskol: «TNT», 2011.

2. Geoffrey E., Spriggs. A. History of fine grained hardmetal. Int. J. Refract. Met. Hard Mater. 1995. Vol. 13. P. 241—255.

3. Панов В.С., Зайцев А.А. Тенденции развития технологии ультрадисперсных и наноразмерных твердых сплавов WC—Co // Изв. вузов. Порошк. металлургия и функц. покрытия. 2014. No. 3. C. 38—48; Panov V.S., Zaitsev A.A. Tendentsii razvitiya tekhnologii ul’tradispersnykh i nanorazmernykh tverdykh splavov WC—Co [Tendencies of development of the technology of ultrafine and nanosized hard alloys WC—Co]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2014. No. 3. C. 38—48.

4. Zak Fang Z., Xu Wang, Taegong Ryu, Kyu Sup Hwang, Sohn H.Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide: A review. Int. J. Refract. Met. Hard Mater. 2009. Vol. 27. P. 288—299.

5. Shatov A.V., Ponomarev S.S., Firstov S.A. Fracture and strength of hardmetals at room temperature. Compr. Hard Mater. 2007. Vol. 1. P. 38—43.

6. Mukhopadhyay A., Basu B. Consolidation—microstructure—property relationships in bulk nanoceramics and ceramic nanocomposites: A review. Int. Mater. Rev. 2007. Vol. 52. No. 5. P. 257—288.

7. Gille G., Szesny B., Dreyer K., Berg H., Schmidt J., Gestrich T., Leitner G. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts. Int. J. Refract. Met. Hard Mater. 2002. Vol. 20. P. 3—22.

8. Hiroyuki Saito, Akira Iwabuchi, Tomoharu Shimizu. Effects of Co content and WC grain size on wear of WC cemented carbide. Wear. 2006. Vol. 261. P. 126—132.

9. Jia K., Fischer T.E. Sliding wear of conventional and nanostructured cemented carbides. Wear. 2001. Vol. 203— 204. P. 310—318.

10. Krakhmalev P.V., Adeva Rodil T., Bergstrom J. Influence of microstructure on the abrasive edge wear of WC—Co hardmetals. Wear. 2007. Vol. 263. P. 240—245.

11. Allen C., Sheen M., Williams J., Pugsley V.A. The wear of ultrafine WC—Co hard metals. Wear. 2001. Vol. 250. P. 604—610.

12. Дворник М.И., Зайцев А.В. Сравнительный анализ износостойкости субмикронного твердого сплава WC—8Co—1Cr3C2 и традиционных твердых сплавов при сухом трении // Перспективные материалы. 2015. No. 5. C. 34—41; Dvornik M. I., Zaitsev A.V. Sravnitel’nyi analiz iznosostoikosti submikronnogo tverdogo splava WC—8Co—1Cr3C2 i traditsionnykh tverdykh splavov pri sukhom trenii. [Comparative analysis of the wear resistance of WC—8Co—1Cr3C2 and traditional hard alloys under dry friction]. Perspektivnye materialy. 2015. No. 5. Р. 34—41.

13. Дворник М.И., Мокрицкий Б.Я., Зайцев А.В. Сравнительный анализ микроабразивной износостойкости традиционных твердых сплавов и субмикронного твердого сплава WC—8Co—1Cr3C2 // Вопросы материаловедения. 2015. No. 1(81). C. 45—51; Dvornik M.I., Mokritskii B.Ya., Zaitsev A.V. Sravnitel’nyi analiz mikroabrazivnoi iznosostoikosti traditsionnykh tverdykh splavov i submikronnogo tverdogo splava WC—8Co— 1Cr3C2 [Comparative analysis microabrasive durability of traditional carbide and carbide submicron WC— 8Co—1Cr3C2]. Voprosy materialovedeniya. 2015. No. 1(81). Р. 45—51.

14. Ken Brookes. What’s in a name? Nano experts seek definitions. 2006. Vol. 6. P.24—26.

15. Zhi-Hui Xu, John Agren. A modified hardness model for WC—Co cemented carbides. Mater. Sci. Eng. A. 2004. Vol. 386. P. 262—268.

16. Engqvist H., Jacobson S., Axen N. A model for the hardness of cemented carbides. Wear. 2002. Vol. 252. P. 384—393.

17. Makhele-Lecala L., Luiyckx S., Nabarro F.R.N. Semiempirical relationship between hardness, grain size and mean free path of WC—Co. Int. J. Refract. Met. Hard Mater. 2001. Vol. 19. P. 245—249.

18. Seung I. Cha, Kyong H. Lee, HoJ.Ryu, Soon H. Hong. Analytical modeling to calculate the hardness of ultrafine WC—Co cemented carbides. Mater. Sci. Eng. A. 2008. Vol. 489. P. 234—244.

19. Jia K., Fischer T. E., Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC— Co composites. Nanostruct. mater. 1998. Vol. 10. Iss. 5. P. 875—891.

20. Binghai Liu, Yue Zhang, Shixi Ouyang. Study on the relation between structural parameters and fracture strength of WC—Co cemented carbides. Mater. Chem. Phys. 2000. Vol. 62. Iss. 1. P. 35—43.

21. Chongbin Wei, Xiaoyan Song, Jun Fu, Xuemei Liu, Haibin Wang, Yang Gao, Yao Wang. Simultaneously high fracture toughness and transverse rupture strength in ultrafine cemented carbide. Cryst. Eng. Comm. 2013. Vol. 15. P. 3305—3307.

22. Leon L. Shawa, Hong Luob, Yang Zhong. WC—18wt.%Co with simultaneous improvements in hardness and toughness derived from nanocrystalline powder. Mater. Sci. Eng. A. 2012. Vol. 537. P. 39—48.

23. Wu Chonghu, Zhang Taiquan. Formation mechanisms of microstructure imperfections and their effects on strength in submicron cemented carbide. Int. J. Refract. Met. Hard Mater. 2013. Vol. 40. P. 8—13.

24. Курлов А.С., Ремпель А.А., Leenaers A., Van Der Bergh S. Прочность на изгиб и микротвердость твердых сплавов WC—8%Co на основе порошков разной дисперсности // Материаловедение. 2009. No. 4. C. 18—21; Kurlov A.S., Rempel’ A.A., Leenaers A., Van Der Bergh S. Prochnost’ na izgib i mikrotverdost’ tverdykh splavov WC—8%Co na osnove poroshkov raznoi dispersnosti [Flexural strength and microhardness carbide WC— 8%Co powder based on a different dispersity]. Materialovedenie. 2009. No. 4. Р. 18—21.

25. Zhigang Zak Fang. Correlation of transverse rupture strength of WC—Co with hardness. Int. J. Refract. Met. Hard Mater. 2005. Vol. 23. Iss. 2. P. 119—127.

26. Sherif El-Eskandarany M., Amir A. Mahday, Ahmed H.A., Amer A.H. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC—Co powders and subsequent consolidations. J. Alloys and Compounds. 2000. Vol. 312. P. 315—325.

27. Hwan-Cheol Kim, In-Jin Shon, Jin-Kook Yoon, Jung-Mann Doh. Consolidation of ultra fine WC and WC—Co hard materials by pulsed current activated sintering and its mechanical properties. Int. J. Refract. Met. Hard Mater. 2007. Vol. 25. Iss. 1. P. 46—52.

28. Hwan Cheol Kim, In Kyoon Jeong, In Jin Shon, In Yong Ko, Jung Mann Doh. Fabrication of WC—8 wt.%Co hard materials by two rapid sintering processes. Int. J. Refract. Met. Hard Mater. 2007. Vol. 25. Iss. 4. P. 336—340.

29. Friederichs J.W. Articles of ultrafine grained cemented carbide: Pat. 5368628 (USA). 2000.

30. Панов В.С. Технология и свойства спеченных твердых сплавов и изделий из них. М.: МИСиС, 2001; Panov V.S. Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh [Technology and properties of sintered hard alloys and products from them]. Mоscоw: MISIS, 2001.

31. Третьяков В.И. Основы металловедения и технологии производства спеченных твердых сплавов. М.: Ме-таллургия. 1976; Tret’yakov V.I. Osnovy metallovedeniya i tekhnologii proizvodstva spechennykh tverdykh splavov [Fundamentals of metallurgy and technology of sintered carbide]. Mоscоw: Metallurgiya, 1976.

32. Дворник М.И., Зайцев А.В., Ершова Т.Б. Повышение прочности и твердости субмикронного твердого сплава WC—8%Co—1%Cr3C2 за счет докарбидизации в процессе спекания // Вопросы материаловедения. 2011. No. 4(68). C. 81—88; Dvornik M.I., Zaitsev A.V., Ershova T.B. Povyshenie prochnosti i tverdosti submikronnogo tverdogo splava WC—8%Co—1%Cr3C2 za schet dokarbidizatsii v protsesse spekaniya [Increased strength and hardness of submicron cemented carbide WC—8%Co—1%Cr3C2 by dokarbidizatsii during sintering]. Voprosy materialovedeniya. 2011. No. 4(68). Р. 81—88.

33. Shetty D.K., Wright I.G., Mincer P.N. and Clauer A.H. Indentation fracture of WC—Co cermets. J. Mater. Sci. 1985. Vol. 20. P. 1873—1882.

34. Yamamoto T., Ikuhara Y., Watanabe T., Sakuma T., Taniuchi Y., Okada K., Tanase T. High resolution microscopy study in Cr3C2-doped WC—Co. J. Mater. Sci. 2001. Vol. 36. P. 3885—3890.

35. Yamamoto T., Ikuhara Y., Sakuma T. High resolution transmission electron microscopy study in VC-doped WC—Co compound. Sci. Technol. Adv. Mater. 2000. Vol. 1. P. 97—104.

36. Yigao Yuan, Xiaoxiao Zhang, Jianjun Ding, Jun Ruan. Measurement of WC grain size in ultrafine grained WC— Co cemented carbides. Appl. Mech. Mater. 2013. Vol. 278— 280. P. 460—463.

37. Чернявский К.С., Травушкин Г.Г. Современные представления о связи структуры и прочности твердых сплавов WC—Co (Обзор) // Проблемы прочности. 1980. No. 4. C. 11—19; Chernyavskii K.S., Travushkin G.G. Sovremennye predstavleniya o svyazi struktury i prochnosti tverdykh splavov WC—Co (obzor) [Modern views on the communication structure and the strength of hard alloys WC—Co (Review)]. Problemy prochnosti. 1980. No. 4. Р. 11—19.

38. Чапорова И.Н., Чернявский К.С. Структура спеченных твердых сплавов. М.: Металлургия. 1975; Chaporova I.N., Chernyavskii K.S. Struktura spechennykh tverdykh splavov [The structure of sintered carbide]. Moscow: Metallurgiya, 1975.

39. Exner H.E., Fischmeister H.F. Structure of sintered tungsten carbide-cobalt alloys. Arch. Eisenhuttenwesen. 1966. Bd. 37. S. 417—426.

40. Lee H.C., Gurland J. Hardness and deformation of cemented tungsten carbide. Mater. Sci. Eng. 1978. Vol. 33. Iss. 1. P. 125—133.

41. Sigl L.S., Fischmeister H.F. On the fracture toughness of cemented carbides. Acta Metal. 1988. Vol. 36. No. 4. P. 887—891.

42. Luyckx S., Love A. The dependence of the contiguity of WC on Co content and its independence from WC grain size in WC—Co alloys. Int. J. Refract. Met. Hard Mater. 2006. Vol. 24. P.75—79.

43. Felten F., Schneider A., Sadowski T. Estimation of R-curve in WC/Co cermet by CT test. Int. J. Refract. Met. Hard Mater. 2008. Vol. 26. P. 55—60.

44. Cahal McVeigh, Wing Kam Liu. Multiresolution modeling of ductile reinforced brittle composites. J. Mech. Phys. Sol. 2009. Vol. 57. P. 244—267.

45. Дворник М.И., Михайленко Е.А. Моделирование процесса распространения трещины в субмикронных и наноструктурных твердых сплавах // Механика композиционных материалов и покрытий. 2014.

46. Т. 20. No. 1. C. 197—210; Dvornik M.I., Mikhailenko E.A. Modelirovanie protsessa rasprostraneniya treshchiny v submikronnykh i nanostrukturnykh tverdykh splavakh [Modelling of the spread of cracks in the submicron and nanostructured solid alloys. Mechanics of Composite Materials and Coatings]. Mekhanika kompozitsionnykh materialov i pokrytii. 2014. Vol. 20. No. 1. P. 197—210.

47. Mandel K., Kruger L., Schimpf C. Study on parameter optimisation for fieldassisted sintering of fullydense, nearnano WC—12Co. Int. J. Refract. Met. Hard Mater. 2014. Vol. 45. P. 153—159.

48. Godse R., Gurland J. Applicability of the critical strain fracture criterion to WC—Co hard metals. Mater. Sci. Eng. A. 1988. Vol. 105-106. Pt. 2. P. 331—336.

49. Osterstock F., Chermant J.-L. Some aspects of the fracture of WC—Co composites. Sci. Hard Mater. 1983. P. 615—629.


Review

For citations:


Dvornik M.I., Zaitsev A.V. CHANGE IN STRENGTH, HARDNESS AND CRACKING RESISTANCE IN TRANSITION FROM MEDIUM-GRAINED TO ULTRAFINE HARD ALLOY. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(2):39-46. (In Russ.) https://doi.org/10.17073/1997-308X-2017-2-39-46

Views: 1061


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)