RESEARCH ON THE POSSIBILITY OF PRODUCING (Ta,Hf)C SINGLE-PHASE TANTALUM-HAFNIUM CARBIDE BY SHS
https://doi.org/10.17073/1997-308X-2017-2-55-63
Abstract
The paper studies the effect of mechanical activation conditions (MA) on the microstructure and phase composition of Ta–Hf–C reaction mixtures and products derived from them by self-propagating high-temperature synthesis (SHS). The mechanical activation of Ta–Hf-C reaction mixtures was carried out in centrifugal planetary mills with different drum rotation speeds. It was found that an increase in the drum rotation speed from 250 to 900 rpm reduced the heterogeneity scale of the reaction charge, reduced the size of coherent scattering regions of tantalum and hafnium by an order of magnitude, and led to an increase in the strain degree of their crystal lattices by 1,5–2,0 times. It was experimentally established that initiation of the SHS reaction in the activated Ta–Hf–C mixture at an initial temperature Т0 Т0 = 800 K only, when the adiabatic combustion temperature reached 3274 K. The single-phase carbide (Ta,Hf)C with a lattice parameter а = 0,44787 nm corresponding to 18,0 at.% of HfC dissolved in TaC, was obtained from reaction mixtures activated under optimal regimes. The content of hafnium oxide in products does not exceed 1 %. The structure of samples is characterized by high porosity (more than 30 %) and a small carbide grain size (less than 10 μm), which made it possible to obtain the (Ta,Hf)C powder by milling the SHS product in a ball mill.
About the Authors
E. I. PatseraRussian Federation
Cand. Sci. (Tech.), Researcher
(119049, Russia, Moscow, Leninsky pr., 4)
V. V. Kurbatkina
Russian Federation
Cand. Sci. (Tech.), Leading researcher
E. A. Levashov
Russian Federation
Dr. Sci. (Tech.), Prof., Acad. of RANS, Director of the Scientific-educational center SHS MISIS-ISMAN, Head of the Department of powder metallurgy and functional coatings, NUST «MISIS»
A. N. Timofeev
Russian Federation
Dr. Sci. (Tech.), 1-st Deputy director general
(141070, Russia, Moskovskii region, Korolev, Pionerskaya str.,4)
References
1. Gaballa O., Cook B., Russell A.M. Reduced-temperature processing and consolidation of ultra-refractory Ta4HfC5. Int. J. Refract. Met. Hard Mater. 2013. Vol. 41. P. 293—299.
2. Simonenko E.P., Ignatov N.A., Simonenko N.P., Ezhov Yu.S., Sevastyanov V.G., Kuznetsov N.T. Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology. Russ. J. Inorg. Chem. 2011. Vol. 56. No. 11. P. 1681—1687.
3. Ghaffari S.A., Faghihi-Sani M.A., Golestani-Fard F., Man-dal H. Spark plasma sintering of TaC—HfC UHTC via disilicides sintering aids. J. Eur. Ceram. Soc. 2013. Vol. 33. No. 8. P. 1479—1484.
4. Pierson H.O. Handbook of refractory carbides and nitrides properties, characteristics. Processing and applications. Handbook, Noyes publ. Westwood, New Jersey, USA, 1996.
5. Sciti D., Silvestroni L., Guicciardi S., Fabbriche D.D., Bellosi A. Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi2 or MoSi2. J. Mater. Res. 2009. Vol. 24. No. 6. P. 2056—2065.
6. Silvestroni L., Sciti D., Kling J., Lauterbach S., Kleebe H.-J. Sintering mechanisms of zirconium and hafnium carbides doped with MoSi2. J. Amer. Ceram. Soc. 2009. Vol. 92. No. 7. P. 1574–1579.
7. Osama Gaballa. Processing development of 4TaC—HfC and related carbides and borides for extreme environments: Graduate Theses and Diss. 12635. 2012.
8. Ghaffari S.A., Faghihisani M.A., Golestanifard F., Nojabayy M. Diffusion and solid solution formation between the binary carbides of TaC, HfC and ZrC. Int. J. Refract. Met. Hard Mater. 2013. Vol. 41. P. 180—184.
9. Sevast’yanov V.G., Simonenko E.P., Simonenko N.P., Ezhov Yu.S., Ignatov N.A., Kuznetsov N.T. Nizkotemperaturnyi sintez karbida tantala cherez transparentnyi tantal-uglerodsoderzhashchii gel’ [Low-temperature synthesis of tantalum carbide through a transparent tantalum-carbon-containing gel]. Neorganicheskie materialy. 2010. Vol. 46. No. 5. P. 563—569.
10. Abdelkader A.M., Fray D.J. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification. J. Eur. Ceram. Soc. 2012. Vol. 32. No. 16. P. 4481—4487.
11. Merzhanov A.G. Kontseptsiya razvitiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza kak oblasti nauchno-tekhnicheskogo protsessa [The concept of SHS as a field of scientific and technical process]. Chernogolovka: Territoriya, 2003.
12. Varma A., Lebrat J.-P. Combustion synthesis of advanced materials. Chem. Eng. Sci. 1992. Vol. 47. P. 2179—2194.
13. Lackner M. Combustion synthesis — novel routes to novel materials. Nanchang, 2010.
14. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 2008. Vol. 12. No. 3—4. P. 44—50.
15. Liu G., Li J., Chen K. Combustion synthesis of refractory and hard materials: A review. Int. J. Refract. Met. Hard Mater. 2013. Vol. 39. P. 90—102.
16. Rogachev A.S, Mukasyan A.S. Combustion for material synthesis. CRC Press, 2014.
17. Merzhanov A.G. Solid flames: Discoveries, concepts, and horizons of cognition. Combust. Sci. Technol. 1994. Vol. 98. No. 4—6. P. 307—336.
18. Munir Z., Anselmi-Tamburini U. Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 1989. Vol. 3. No. 6. P. 279—365.
19. Merzhanov A.G., Borovinskaya I.P. Samorasprostra-nyayushchiisya vysokotemperaturnyi sintez tugoplavkikh neorganicheskikh soedinenii [SHS refractory inorganic compounds]. Doklady Akademii nauk SSSR. 1972. Vol. 204. No. 2. P. 336—339.
20. Patsera E.I., Levashov E.A., Kurbatkina V.V., Kovalev D.Yu. Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures. Ceram. Int. 2015. Vol. 41. No. 7. P. 8885—8893.
21. Kurbatkina V.V., Patsera E.I., Vorotilo S.A., Levashov E.A., Timofeev A.N. Conditions for fabricating single-phase (Ta,Zr)C carbide by SHS from mechanically activated reaction mixtures. Ceram. Int. 2016. Vol. 42. No. 15. P. 16491—16498.
22. Shcherbakov. V.A., Pityulin. A.N. Osobennosti goreniya sistemy Ti—S—V [Features of the system combustion Ti—C—B]. Fizika goreniya i vzryva. 1983. Vol. 19. No. 5. P. 108—111.
23. Gorelik C.C., Skakov Yu.A., Rastorguev L.N. Rentgeno-graficheskii i elektronno-opticheskii analiz [X-ray and electron-optical analysis]. Moscow: MISIS, 1994.
Review
For citations:
Patsera E.I., Kurbatkina V.V., Levashov E.A., Timofeev A.N. RESEARCH ON THE POSSIBILITY OF PRODUCING (Ta,Hf)C SINGLE-PHASE TANTALUM-HAFNIUM CARBIDE BY SHS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(2):55-63. (In Russ.) https://doi.org/10.17073/1997-308X-2017-2-55-63