PHASE COMPOSITION AND STRUCTURE OF TIC – HSS STEEL BINDER PRODUCED BY SHS METHOD
https://doi.org/10.17073/1997-308X-2017-2-64-71
Abstract
The paper describes the production of «TiC – steel binder» metal matrix composites by self-propagating high-temperature synthesis (SHS) in reaction powder mixtures of titanium, black carbon (soot), and HSS powders in laminar burning mode. Composite powders with various steel binder contents were prepared by milling and screening the synthesis products. The synthesis products were studied by optical and scanning electron microscopy, X-ray diffraction analysis, and electron probe microanalysis. It was found that an average size of carbide inclusions in the structure of the metal matrix composite depends on the content of the heat inert steel powder in reaction mixtures and can be controlled over a wide range. The lattice parameter of the titanium carbide formed in the SHS process is smaller than that of equiatomic TiC. The main reason for decrease in the lattice parameter is the non-stoichiometric carbide composition preconditioned by the carbon deficit. According to the results of the electron probe microanalysis, titanium carbide inclusions in the composite structure additionally contain up to 1 at% of iron and other alloying elements. The dissolution of iron and alloying elements leads to a certain increase in the carbide lattice parameter, which partially compensates for decrease in the lattice parameter caused by the carbon deficit. According to the results of the X-ray microanalysis, ferrite as a main phase in the metal binder has an ultra-equilibrium content of alloying elements. SHS products annealed at700 °Cresult in decomposition of retained austenite and dissolution of alloying element carbides in ferrite.
About the Authors
G. A. PribytkovRussian Federation
Dr. Sci. (Tech.), Primary researcher of Physics nanostructure functional materials laboratory
(634055, Russia, Tomsk, Akademicheskii av. 2/4)
V. V. Korzhova
Russian Federation
Cand. Sci. (Tech.), Researcher of Physics nanostructure functional materials laboratory
A. V. Baranovskii
Russian Federation
Student
(634050, Russia, Tomsk, Lenina av. 30)
M. G. Krinitsyn
Russian Federation
Technologist, Physics nanostructure functional materials laboratory
References
1. Panin V.E., Belyuk S.I., Durakov V.G., Pribytkov G.A., Rempe N.G. Elektronno-luchevaya naplavka v vakuume: Oborudovanie, tehnologiya, svoystva pokryitiy [Electron beam cladding in a vacuum: the equipment, the technology, the coatings properties]. Svarochnoe proizvodstvo. 2000. No. 2. P. 34—38
2. Gnyusov S.F., Ignatev A.A., Durakov V.G. Struktura i iznosostoykost pokryitiy na osnove stali P6M5 [The structure and wear resistance of coatings based on P6M5 HSS steel]. Pisma v ZhTF. 2010. Vol. 36. No. 16. P. 19—26.
3. Kalita V.I., Komlev D.I. Plazmennie pokritija s nanokristallicheskoi I amorfnoi strukturoi [Plasma sprayed coatings with nanocrystalline and amorphous structure]. Moscow: Lider M, 2008.
4. Gurevich Yu.G., Narva V.K., Frage N.V. Karbidostal. Moscow: Metallurgiya, 1988.
5. Bataev I.A., Bataev A.A., Golkovski M.G., Krivizhenko D.S., Losinskaya A.A., Lenivtseva O.G. Structure of surface layers obtained by atmospheric electron beam cladding of graphite-titanium powder mixture on to titanium surface. Appl. Surf. Sci. 2013. Vol. 284. P. 472—481.
6. Zhang Kemin, Zou Jianxin, Li Jun, Yu Zhishui, Wang Huiping. Surface modification of TC4 alloy by laser cladding with TiC + Ti powders. Trans. Nonferr. Met. Soc. China. 2010. Vol. 20. P. 2192—2197.
7. Weiping Liu, DuPont J.N. Fabrication of functionally graded TiC/Ti composites by laser engeneering net shaping. Scripta Mater. 2003. Vol. 48. Iss. 9. P. 1337—1342.
8. Sun R.L., Lei Y.W., Niu W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti—6Al—4V alloy using a CW CO2 laser. Surf. Coat. Technol. 2009. Vol. 203. P. 1395—1399.
9. Mahamood R.M., Akinlabi E.T. Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater. Design. 2015. Vol. 84. P. 402—410.
10. Wang X.H., Zhang M., Liu X.M., Qu S.Y., Zou Z.D. Micro-structure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding. Surf. Coat. Technol. 2008. Vol. 202. P. 3600—3606
11. Candel J.J., Amigó V., Ramos J.A., Busquets D. Sliding wear resistance of TiCp reinforced titanium composite coating produced by laser cladding. Surf. Coat. Technol. 2010. Vol. 204. P. 3161—3166.
12. Liu D., Zhang S.Q., Li A., Wang H.M. High temperature mechanical properties of a laser melting deposited TiC/ TA15 titanium matrix composite. J. Alloys Compd. 2010. Vol. 496. P. 189—195.
13. Novichenko D., Marants A., Thivillon L., Bertrant Ph., Smurov I. Metal matrix composite material by direct metal deposition. Phys. Proc. 2011. Vol. 12. P. 296—302.
14. Makarov A.V., Soboleva N.N., Malyigina I.Yu., Osintseva A.L. Formirovanie kompozitsionnogo pokryitiya NiCrBSi—TiC s povyishennoy abrazivnoy iznosostoykostyu metodom gazoporoshkovoy lazernoy naplavki [Formation of high abrasive wear NiCrBSi—TiC composite coating by gaspowder laser cladding]. Uprochnyayuschie tehnologii i pokryitiya. 2013. No. 11. P. 38—44.
15. Rogachev A.S., Mukasyan A.S. Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku [Burning materials for the synthesis: introduction to structural macrokinetics]. Moscow: Fizmatlit, 2012.
16. Zarrinfar N., Shipway P.H., Kinnedy A.R., Saidi A. Carbide stoichiometry in TiCx and Cu—TiCx produced by self-propagating high temperature synthesis. Scripta Mater. 2002. Vol. 46. P. 121—126.
17. Li Y.X., Yu J.D., Guo Z.X., Chumakov A.N. Thermodynamic and lattice parameter calculation of TiCx produced from Al—Ti—C powders by laser igniting self propagating high temperature synthesis. Mater. Sci. Eng. A. 2007. Vol. 458. No. 1-2. P. 235—239.
18. Saidi A., Crysanthou A., and Wood J.V. Preparation of Fe—TiC composites by the thermal explosion mode of combustion synthesis. Ceram. Int. 1997. Vol. 23. P. 185—188.
19. Han J.C., Zhang X.H., Wood J.V. In situ combustion synthesis and densification of TiC—xNi cermets. Mater. Sci. Eng. A. 2000. Vol. 280. P. 328—333.
20. Mirkin L.I. Rentgenostrukturnyiy kontrol mashinostroi-telnyih materialov: Spravochnik [X-ray control of engineering materials. Reference book]. Moscow: Mashinostroenie, 1979.
21. Zuev L.V., Gusev A.I. Vliyanie nestehiometrii i uporyadocheniya na period bazisnoy strukturyi kubicheskogo karbida titana [Effect of non-stoichiometry and ordering on the basic structure of cubic titanium carbide]. Fizika tverdogo tela. 1999. Vol. 41. No. 4. Р. 1134—1141.
Review
For citations:
Pribytkov G.A., Korzhova V.V., Baranovskii A.V., Krinitsyn M.G. PHASE COMPOSITION AND STRUCTURE OF TIC – HSS STEEL BINDER PRODUCED BY SHS METHOD. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(2):64-71. (In Russ.) https://doi.org/10.17073/1997-308X-2017-2-64-71