FEATURES OF MICROSTRUCTURE FORMATION IN NI–AL–W SYSTEM DURING SHS
https://doi.org/10.17073/1997-308X-2017-2-72-78
Abstract
New generation superalloys based on Ni intermetallics exhibit high thermomechanical stability at high temperatures and are widely used in modern industry. The production of such materials by self-propagating high-temperature synthesis (SHS) has an advantage over traditional metallurgical production methods due to reaction heat utilization. The creation of coatings and surfacing based on NiAl intermetallic on the surface of W products in the SHS process is of great practical interest. This paper describes experiments on the interaction of a W substrate and a Ni–Al-based melt in the SHS regime. When connecting the W substrate to the NiAl intermetallic during the SHS process, a gradient welded joint with a thickness of 200–400 μm with a complex structure is formed. During the SHS reaction, the formation of a Ni and Al melt occurs, in which surface layers of the W substrate are diffused. During cooling, the tungsten-based phase dendrites (84–86 at% W and 16–14 at% Ni) and the NiAl-based pseudobinary eutectic dendrites (β-phase) which include W-containing phase precipitates of less than 50 nm in size and needlelike Ni3Al inclusions (γ′-phase) crystallize in the subsurface layer. A structured ternary eutectic W + Ni + Ni3Al (α + γ + γ′) containing particles of a solid solution based on Ni3Al intermetallic of about 100 nm in size was found in the transition layer. The paper demonstrates a modification of the W substrate surface with the formation of globular W precipitates (α-phase), which significantly increases the surface area.
About the Authors
A. S. ShchukinRussian Federation
Researcher of Laboratory of dynamics of microheterogeneous processes
(142432, Russia, Moscow reg., Chernogolovka, Academician Osipyan str., 8)
S. G. Vadchenko
Russian Federation
Cand. Sci. (Phys. Math.), Ph.D., Senior researcher of Laboratory of dynamics of microheterogeneous processes
A. E. Sytschev
Russian Federation
Cand. Sci. (Tech.), Deputy director
References
1. Jozwik P., Polkowski W., Bojar Z. Applications of Ni3Al based intermetallic alloys—current stage and potential perceptivities. Materials. 2015. Vol. 8. P. 2537—2568. DOI: 10.3390/ma8052537.
2. Povarova K.B., Bazyleva O.A., Drozdov A.A., Kazans-kaya N.K., Morozov A.E., Samsonova M.A. Konstruktsionnye zharoprochnye splavy na osnove Ni3Al: Poluchenie, struktura i svoistva [Ni3Al based structural high-temperature alloys: Production, structure and properties]. Materialovedenie. 2011. No. 4. P. 39—48.
3. Arginbaeva E.G., Basyleva O.A., Turenko E.I. Intermetallidnye splavy na osnove Ni3Al. In: Vse materialy: Entsyklo-pedicheskii spravochnik [Ni3Al based intermetallic alloys. In: The materials are all: Encyclopedic reference]. 2012. No. 5.
4. Shu-Lan Liu, Chong-Yu Wang, Tao Yu. Effect of Re and W upon brittle fracture in Ni3Al cracks by atomic simulation. Comput. Mater. Sci. 2015. Vol. 110. P. 261—269. DOI:10.1016/j.commatsci.2015.08.037.
5. Kolobov Yu.R. Diffuzionno-kontroliruemye protsessy na granitsakh zeren i plastichnost’ metallicheskikh polikris-tallov [Diffusion-controlled processes on grain boundaries and metallic polycrystal plasticity]. Novosibirsk: Nauka, 1998.
6. Kolobov Yu.R., Kablov E.N., Kozlov E.V., Koneva N.A., Povarova K.B., Graboveczkaya G.P., Buntushkin V.P., Basyleva O.A., Muboyadjan S.A., Budinovskiy S.A. Structura i svoistva intermetallidnykh materialov s nanofaznym uprochneniem [Structure and properties of nanophase hardened intermetallics materials]. Moscow: MISIS, 2008.
7. Takahashi T., Dunand D.C. Nickel aluminide containing refractorymetal dispersoids 2: Microstructure and properties. Mat. Sci. Eng. A. 1995. Vol. 192-193. P. 195—203. DOI:10.1016/0921-5093(94)03235-1.
8. Popovič J., Brož P., Buršík J. Microstructure and phase equilibria in the Ni—Al—W system. Intermetallics. 2008. Vol. 16. No. 7. P. 884—888. DOI:10.1016/j.intermet.2008.04.003.
9. Milenkovic S., Schneider A., Frommeyer G. Constitutional and microstructural investigation of the pseudo-binary NiAl—W system. Intermetallics. 2011. Vol. 19. No. 3. P. 342—349. DOI:10.1016/j.intermet.2010.10.019.
10. Hassel A.W., Smith A.J., Milenkovic S. Nanostructures from directionally solidified NiAl—W eutectic alloys. Electrochim. Acta. 2006. Vol. 52. No. 4. P. 1799—1804. DOI:10.1016/j.electacta.2005.12.061.
11. Cimalla V., Röhlig C.C., Pezoldt J., Niebelschütz M., Ambacher O., Brückner K., Hein M., Weber J., Milenkovic S., Smith A.J., Hassel A.W. Nanomechanics of single crystalline tungsten nanowires. J. Nanomater. 2008. Vol. 2008. Article ID 638947. DOI:10.1155/2008/638947.
12. Milenkovic S., Drensler S., Hassel A.W. A novel concept for the preparation of alloy nanowires. Phys. Status Solidi A. 2011. Vol. 208. No. 6. P. 1259—1264. DOI:10.1002/pssa.201000968.
13. Lyakishev N.P. Diagrammy sostoyaniay dvoinykh metallicheskikh system [Constitution diagrams of binary metallic systems]. Moscow: Mashinostroenie, 1996. Vol. 1. P. 183—185.
14. Franke P., Neuschütz D. Ni-W. In: Binary Systems. Pt 4: Binary systems from Mn—Mo to Y—Zr. Landolt-börnstein — Group IV physical chemistry, 2006. Book DOI:10.1007/b76778. Chapter DOI: 10.1007/10757285_38.
15. Kornienko K., Kublii V., Fabrichnaya O., Bochvar N. Al— Ni—W (aluminium— Nickel—Tungsten). In: Light Metal Systems. Pt. 3. Landolt-börnstein — group IV physical chemistry, 2005. Book DOI:10.1007/b96194. Chapter DOI: 10.1007/10915998_34.
16. Sytschev A.E., Vrel D., Kolobov Yu.R., Kovalev D.Yu., Golosov E.V., Shchukin A.S., Vadchenko S.G. Combustion synthesis in the Ni—Al—W system: Some structural features. Int. J. SHS. 2013. Vol. 22. No. 2. P. 110—113. DOI:10.3103/S1061386213020118.
17. Sytschev A.E., Vrel D., Kolobov Yu.R., Kovalev I.D., Golosov E.V., Shchukin A.S., Vadchenko S.G. Osobennosti structuro i fazoobrazovaniya v sisteme Ni—Al—W v protsesse samorasprostranyayushchegosya vysokotemperaturnogo sinteza [Features of structure and phase formation in Ni— Al—W system during self-propagating high-temperature synthesis]. Kompozity i nanostruktury. 2013. No. 2. P. 51—58.
18. Itin V.I., Naiborodenko Yu.S. Vysokotemperaturnyi sin-tez intermetallicheskikh soedinenii [High-temperature synthesis of intermetallic compounds]. Tomsk: Tomsk. Univ., 1989. P. 34.
19. Novikova M.B., Budberg P.B. Fazovoe sostoyanie litykh splavov sistemy Ni—NiAl—W [Phase state of cast alloys of Ni—NiAl—W system]. Metally. 1986. No. 4. P. 104—108.
20. Basyleva O.A., Turenko E.Yu., Shestakov A.V. Vliyanie ter-micheskoi obrabotki na mikrostructuru i mekhanicheskie svoistva splava na osnove intermetallida NiAl [Heat treatment influence on microstructure and mechanical properties of NiAl based intermetallic alloy]. Trudy VIAM. 2014. No. 9. DOI:10.18577/2307-6046-2014-0-9-2-2.
21. Brož P., Buršík J., Stará Z. Phase equilibria in the Ni— Al—W system at 900°C. Monatshefte für Chemie. 2005. Bd. 136. No. 11. S. 1915—1920. DOI:10.1007/s00706-005-0391-y.
Review
For citations:
Shchukin A.S., Vadchenko S.G., Sytschev A.E. FEATURES OF MICROSTRUCTURE FORMATION IN NI–AL–W SYSTEM DURING SHS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(2):72-78. (In Russ.) https://doi.org/10.17073/1997-308X-2017-2-72-78