Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

EFFECT OF GRANULATION, MECHANICAL ACTIVATION, THERMOVACUUM TREATMENT AND AMBIENT GAS PRESSURE ON TI–0,5C SYSTEM SYNTHESIS REGULARITIES

https://doi.org/10.17073/1997-308X-2017-3-4-13

Abstract

This paper studies dependences of combustion velocities and changes in sample relative lengths from ambient pressure and thermovacuum degassing (TVD) time for the Ti + 0,5C mixture. It was shown that Ti + 0,5C mixture TVD significantly (doubly) increase combustion velocity as well as sample shrinkage. Sample shrinkage occurs under the influence of surface tension due the sufficient quantity of a liquid phase in combustion products that ensure their low viscosity. It was not possible before to obtain pressed samples from the mechanically activated (MA) Ti + C mixture because of their low strength, and therefore to investigate their combustion regularities. To solve this problem, the authors used preliminary granulation of the initial Ti + 0,5C mixture before MA. As a result, dependences of combustion velocity and post-combustion changes in sample lengths from MA time were obtained for the first time ever for the Ti + 0,5C preliminary granulated mixture. It was found that mechanical activation decreases mixture combustion velocity and significantly (triply) increases sample elongation after combustion. Combustion velocity after MA mixture TVD reaches combustion velocity of initial mixtures at the same TVD time. The samples of condensed reaction products from the MA mixture retained a slight elongation (within 8 %) after TVD. X-ray phase analysis revealed no reaction products formed during MA. Combustion products of all mixtures (initial, activated mixture and activated granules) contain the Ti2C phase and Ti traces. X-ray analysis of the initial and MA mixtures shows peaks intensity broadening and reduction of peak intensity to the background intensity ratio after MA thus indicating a higher defect rate in the crystal structure of the components of mixtures. This effect intensifies with an increase in activation time. The study results are interpreted based on the conduction – convection model of reaction wave propagation.

About the Authors

N. A. Kochetov
Institute of Structural Macrokinetics and Materials Science RAS
Russian Federation

Cand. Sci. (Phys.-Math.), Senior researcher, Laboratory of dynamics of microheterogeneous processes,

143432, Moscow reg., Chernogolovka, Academician Osipyan str., 8



B. S. Seplyarskii
Institute of Structural Macrokinetics and Materials Science RAS
Russian Federation

Cand. Sci. (Phys.-Math.), Head of the Laboratory of combustion of dispersed systems, 

143432, Moscow reg., Chernogolovka, Academician Osipyan str., 8



References

1. Merzhanov A.G., Borovinskaya I.P. Samoraprostranyayushiisya vyisokotemperaturnyii sintez tugoplavkih neorganicheskih soedinenii [SHS of refractory inorganic compounds]. Doklady Akademii Nauk SSSR. 1972. Vol. 204. No. 2. P. 366—369.

2. Shkiro V.M., Borovinskaya I.P. Issledovanie zakonomernostei goreniya smesei titana s uglerodom. In: Protsessyi goreniya v chimicheskoi technologii i metallurgii [Investigation of mixtures titanium with carbon combustion regularities. In: Combustion processes in chemical technologies and metallurgy: Collection of articles]. Chernogolovka: Otdelenie Instituta khimicheskoi fiziki AN SSSR. 1975. P. 253—258.

3. Shсherbakov V.A., Sychev A.E., Shteinberg A.S. Outgassing macrokinetcs in SPS. Combustion, Explosion and Shock Waves. 1986. Vol. 22. No. 4. P. 437—443. DOI 10.1007/BF00862888.

4. Vadchenko S.G. Gas release during combustion of Ti + 2B films: Influence of mechanical alloying . Inter. J. SHS. 2015. Vol. 24. No. 2. P. 90—93. DOI: 10.3103/S1061386215020107.

5. Eremina E.N., Kurbatkina V.V., Levashov E.A., Rogachev A.S., Kochetov N.A. Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo—10 % B mixture. Chem. Sustain. Development. 2005. Vol. 13. No. 2. P. 197—204.

6. V’yushkov B.V., Levashov E.A., Ermilov A.G., Pityulin A.N., Borovinskaya I.P., Egorychev K.N. Characteristics of the effect preliminary mechanical activation of a batch on parameters of the self-propagating high- temperature synthesis process, structure, and properties of multicomponent cermet SHTM-5. Combustion, Explosion and Shock Waves. 1994. Vol. 30. No. 5. P. 630—634. DOI: 10.1007/BF00755828.

7. Naiborodenko Yu.S., Kasatskii N.G., Lavrenchuk G.V., Kashporov L.Ya., Malinin L.A. Vliyanie termicheskoi obrabotki v vakuume na gorenie besgasovyh system. In: Gorenie condensirovannyh i geterogennyh system: Materialy VI Vsesoyusnogo simposiuma po goreniyu i vzryvu [Influence of thermal treatment on combustion of gasless systems: Proc. VI All-Union Symp. on Combustion and Explosion]. Chernogolovka (Russia), 1980. P. 74—77.

8. Smolyakov V.K. Macrostructural transformation in gasless combustion processes. Combustion, Explosion and Shock Waves. 1990. Vol. 26. No. 3. P. 301—307. DOI: 10.1007/BF00751368.

9. Seplyarskii B.S. The nature of the anomalous dependence of the velocity of combustion of «gasless» systems on sample diameter. Dokl. Phys. Chem. 2004. Vol. 396. No. 4-6. P. 130—133.

10. Avvakumov E.G. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanolhimiicheskikh tekhnologii [Basic principles of mechanical activation, mechanosynthesis, and mechanochemical processing]. Novosibirsk: Izdatelstvo SO RAN, 2009.

11. Kochetov N.A., Vadchenko S.G. Mechanically activated SHS of NiAl: Effect of Ni morphology and mechanoactivation conditions. Intern. J. SHS. 2012. Vol. 21. No. 1. P. 55—58. DOI: 10.3103/S1061386212010086.

12. Levashov E.A., Kurbatkina V.V., Kolesnichenko K.V. Zakononernosti vliyaniya predvaritel’nogo mehanicheskogo aktivirovaniya na reakcionnuyu sposobnost’ SVS smesei na osnove titana [Peculiarities of the preliminary mechanical activation influence on the SHS titanium based mixtures reactivity]. Izv. vuzov. Tsvet. metallurgiya. 2000. No. 6. С. 61—67.

13. Korchagin M.A., Grigorieva T.F., Barinova A.P., Lyakhov N.Z. The effect of mechanical treatment on the rate and limits of combustion in SHS processes. Inter. J. SHS. 2000. Vol. 9. No. 3. P. 307—320.

14. Maglia F., Anselmi-Tamburini U., Deidda C., Delogu F., Cocco G., Munir Z.A. Role of mechanical activation in SHS synthesis of TiC. J. Mater. Sci. 2004. Vol. 39. P. 5227—5230.

15. Korchagin M.A., Lyakhov N.Z. Self Propagating high temperature synthesis in mechanoactivated compositions. Russ. J. Phys. Chem., Ser. B. 2008. Vol. 2. No. 1. P. 77—82.

16. Rogachev A.S., Shkodich N.F., Vadchenko S.G., Baras F., Chassagnon R., Sachkova N.V., Boyarchenko O.D. Reactivity of mechanically activated powder blends: Role of micro and nano structures. Inter. J. SHS. 2013. Vol. 22. No. 4. P. 210—216. DOI 10.3103/S1061386213040067.

17. Bernard F., Gaffet E. Mechanical alloying in the SHS research Inter. J. SHS. 2001. Vol. 10. No. 2. P. 109—132.

18. Grigorieva T., Korchagin M, Lyakhov N. Combination of SHS and mechanochemical synthesis for nanopowder technologies. KONA. 2002. No. 20. P. 144—158.

19. Rogachev A.S., Mukasyan A.S. Combustion of heterogeneous nanostructural systems (review). Combustion, Explosion and Shock Waves. 2010. Vol. 46. No. 3. P. 243—266. DOI:10.1007/s10573-010-0036-2.

20. Kovalev D.Yu., Kochetov N.A., Ponomarev V.I. Criteria of the critical state of the Ni—Al system during mechanical activation. Combustion, Explosion and Shock Waves. 2010. Vol. 46. No. 4. P. 457—463. DOI:10.1007/s10573-010-0060-2.

21. Rogachev A. S., Kochetov N. A., Kurbatkina V. V., Levashov E. A., Grinchuk P. S., Rabinovich O. S., Sachkova N. V., Bernard F. Microstructural aspects of gasless combustion of mechanically activated mixtures. I. High-speed microvideorecording of the Ni-Al composition. Combustion, Explosion and Shock Waves. 2006. Vol. 42. No. 4. P. 421—429. DOI: 10.1007/s10573-006-0071-1.

22. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Sachkova N.V., Chassagnon R. Reactivity of mechanoactivated Ni-Al blends. Inter. J. SHS. 2012. Vol. 21. No. 2. P. 104—109. DOI: 10.3103/S1061386212020100.


Review

For citations:


Kochetov N.A., Seplyarskii B.S. EFFECT OF GRANULATION, MECHANICAL ACTIVATION, THERMOVACUUM TREATMENT AND AMBIENT GAS PRESSURE ON TI–0,5C SYSTEM SYNTHESIS REGULARITIES. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(3):4-13. https://doi.org/10.17073/1997-308X-2017-3-4-13

Views: 897


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)