Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

PREPARATION OF SPHERICAL NB-16SI ALLOY POWDERS FOR ADDITIVE TECHNOLOGIES BY MECHANICAL ALLOYING AND SPHEROIDIZATION IN ELECTRIC ARC THERMAL PLASMA

https://doi.org/10.17073/1997-308X-2017-3-32-40

Abstract

The creation of new higher melting temperature materials for gas turbine engines is one of the most important tasks of modern materials. This is due to the fact that nickel superalloys currently used for these purposes have a low melting point about 1400 °C which limits their own maximum working temperature to 1100–1150 °C. Ni alloys can be replaced by natural composites with refractory metals as a matrix and their silicides as intermetallic hardeners. Only three of refractory metal – silicon binary systems exhibit stability to the Me5Si3 silicide, namely Nb5Si3, Re5Si3 and W5Si3, Nb5Si3 is the best compound among other silicides with regard to the combination of high melting point and low density. The use of Nb–Si alloys in additive manufacturing machines is of considerable interest. The paper presents the results of experimental studies on the thermal plasma processing of Nb–16Si alloy powder prepared by mechanical alloying of Nb and Si elemental powders. Nb–16Si (at.%) alloy powder was prepared by mechanical alloying of pure element powders using the Fritsch Pulverisette 4 planetary mill. Spheroidization was carried out on a plasma unit based on vortex-stabilized arc thermal plasma generator. The results of experimental studies conducted confirmed the possibility to perform plasma spheroidization of Nb–16Si alloy powder particles obtained by mechanical alloying. It is shown that the particle surface after spheroidization is rough and reflects the cast structure of the material. Three phase components having different optical contrast are revealed on microsections: Nb5Si3, Nb3Si and Nbss, which is confirmed by X-ray diffraction.

About the Authors

A. A. Popovich
Peter the Great Saint-Petersburg Polytechnic University (SPbPU)
Russian Federation

Dr. Sci. (Tech.), Prof., Head of Institute of metallurgy, mechanical engineering and transport, 

195251, St. Petersburg, Polytechnicheskaya, 29



N. G. Razumov
SPbPU
Russian Federation
Cand. Sci. (Tech.), Leading engineer, Laboratory of functional materials


A. V. Grigoriev
SPbPU; JSC «Klimov»
Russian Federation

Post-graduate student;

Chief designer, 

194100, St. Petersburg, Kantemirovskaya str., 11



A. V. Samokhin
Institute of Metallurgy and Materials A.A. Baikova (IMET RAS)
Russian Federation

Cand. Sci. (Tech.), Leading researcher, Laboratory of plasma processes in metallurgy and metal processing (№ 16), 

119991, Moscow, Leninsky pr., 49



V. Sh. Sufiiarov
SPbPU
Russian Federation
Cand. Sci. (Tech.), Leading researcher, Laboratory of Functional materials


I. S. Goncharov
SPbPU
Russian Federation
Post-graduate student


A. A. Fadeev
IMET RAS
Russian Federation
Junior researcher


M. A. Sinaiskii
IMET RAS
Russian Federation
Junior researcher


References

1. Svetlov I.L. High-temperature Nb—Si composites. Pt. 1. Inorg. Mater.: Appl. Res. 2011. Vol. 2. No. 4. P. 307—315.

2. Karpov M.I. Sovremennye napravlenija issledovanij i dostizhenija v oblasti sozdanii novyh zharoprochnyh materialov na osnove tugoplavkih metallov s intermetallidnym i karbidnym uprochneniem. In: Nanotehnologii funkcional’nyh materialov (NFM’16): Trudy mezhdunarodnoj nauchno-tehnicheskoj konferencii [Modern research directions and achievements in the field of creation of new heat-resistant materials on the basis of refractory metals and intermetallic carbide hardening. In: Proc. of International scientific and technical conference Nanotechnologies of functional materials (NFM’16) (Sankt-Peterburg, 21—25 June 2016)]. Sankt-Peterburg: SPbSTU, 2016. P. 350—354.

3. Drawin S., Justin J.F. Advanced lightweight silicide and nitride based materials for turbo-engine applications. Aerospace Lab. 2011. Vol. 3. Р. 1—13.

4. Zhao J.-C., Bewlay B.P., Jackson M.R. Determination of Nb—Hf—Si phase equilibria. Intermet. 2001. Vol. 9. No. 8. Р. 681—689.

5. Drawin S. Ultra High temperature materials for turbines. European Framework programme FP6 — specific targeted research project (STREP) priority T4 — Aeronautics and Space: Final activity report. 2008.

6. Karpov M.I., Vnukov V.I., Korzhov V.P., Stroganova T.S., Zheltyakova I.S., Prokhorov D.V., Gnesin I.B., Kiiko V.M., Kolobov Y.R., Golosov E.V., Nekrasov A.N. Structure and mechanical properties of a eutectic high-temperature Nb-Si alloy grown by directional solidification. Russ. Metal. (Metally). 2014. No. 4. P. 267—274.

7. Svetlov I.L., Kuzmina N.A., Neiman A.V., Ishadzhanova I.V., Karpov M.I., Stroganova T.S., Korzhov V.P., Vnukov V.I. Effect of the rate of solidification on the microstructure, phase composition, and strength of Nb/Nb5Si3 in-situ composites. B. Russ. Acad. Sci. Phys. 2015. Vol. 79. No. 9. P. 1146—1150.

8. Drawin S., Monchoux J.P., Raviart J.L., Couret A. Microstructural properties of Nb-Si based alloys manufactured by powder metallurgy. Adv. Mater. Res. 2011. Vol. 278. No. 4. P. 533—538.

9. Drawin S. P/M manufacturing of niobium silicide based materials. In: Proc. of 18 Plansee Seminar 2013 — Int. Conf. on refractory metals and hard materials (Reutte/Austria, 3—7 June, 2013). RM105.

10. Wang X.L., Wang G.F., Zhang K.F. Effect of mechanical alloying on microstructure and mechanical properties of hot-pressed Nb—16Si alloys. Mater. Sci. Eng. A. 2010. Vol. 527. P. 3253—3258.

11. Wang X.L., Zhang K.F. Mechanical alloying, microstructure and properties of Nb—16Si alloy. J. Alloys Compd. 2010. Vol. 490. P. 677—683.

12. Butyagin P.Yu. Problems in mechanochemistry and prospects for its development. Russ. Chem. Rev. Vol. 63. Iss. 12. P. 965—976.

13. Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001. Vol. 46. P. 1—184.

14. Boldyrev V.V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 2006. Vol. 75. Iss. 3. P. 177—189.

15. Frazier W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014. Vol. 23. No. 6. P. 1917—1928.

16. Zverev S.G. Razrabotka i issledovanie vysokochastotnoiy plazmennoiy ustanovki dlya obrabotki tugoplavkikh dispersnykh materialov [Research and development of high-frequency plasma systems for the treatment of refractory dispersed materials]: Abstr. Dis. of PhD. Sankt-Peterburg: SPbSTU, 2002.

17. Alekseev N.V., Samokhin A.V., Tsvetkov Yu.V. Plazmennaya ustanovka dlya polucheniya nanodispersnykh poroshkov [Plasma installation for obtaining nanopowders]. Pat: 2311225 (RF). 2007.

18. Kumar S., Selvarajan V. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet. Mater. Characterization. 2008. Vol. 59. No. 6. P. 781—785.

19. Chaturvedi V., Ananthapadmanabhan P. V., Chakravarthy Y., Bhandari S., Tiwari N., Pragatheeswaran A., Das A.K. Thermal plasma spheroidization of aluminum oxide and characterization of the spheroidized alumina powder. Ceram. Int. 2014. Vol. 40. No. 6. P. 8273—8279.

20. Samokhin A.V., Alekseev N.V., Tsvetkov Yu.V. Plasmaassisted processes for manufacturing nanosized powder materials. High Energy Chemistry. 2006. Vol. 40. Iss. 2. P. 93—97.

21. Zhu H.L., Tong H.H., Yang F.Z., Wang Q., Cheng C.M. A comparative study on radio-frequency thermal plasmaspheroidization for two types of alumina ceramic powder. Adv. Mater. Res. 2014. Vol. 1058. P. 221—225.

22. Tong J.B., Lu X., Liu C.C., Wang L.N., Qu X.H. Fabrication of micro-fine spherical high Nb containing TiAl alloy powder based on reaction synthesis and RF plasma spheroidization. Powder Technol. 2015. Vol. 283. P. 9—15.


Review

For citations:


Popovich A.A., Razumov N.G., Grigoriev A.V., Samokhin A.V., Sufiiarov V.Sh., Goncharov I.S., Fadeev A.A., Sinaiskii M.A. PREPARATION OF SPHERICAL NB-16SI ALLOY POWDERS FOR ADDITIVE TECHNOLOGIES BY MECHANICAL ALLOYING AND SPHEROIDIZATION IN ELECTRIC ARC THERMAL PLASMA. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(3):32-40. (In Russ.) https://doi.org/10.17073/1997-308X-2017-3-32-40

Views: 1088


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)