Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

DEVELOPMENT OF POWDER COMPOSITE BASED ON AL–SI–NI SYSTEM AND TECHNOLOGY FOR MAKING BILLETS OF THIS COMPOSITE

https://doi.org/10.17073/1997-308X-2017-3-41-50

Abstract

The paper provides the results of alloy development investigation and technology of making compact billets of the Al-Si-Ni-based composite for aerospace equipment components. Composite production included several stages: first, matrix powder was produced by gas atomization and then matrix powder with disperse alloying additives was mechanically alloyed in high-energy machines. The vacuum press, unique equipment located at OJSC «Kompozit» (Korolyov, Moscow region, Russia), was used to develop and test the technology of mechanically alloyed composite degassing in a thin layer (to eliminate material ejection from the container when degassing a large volume of powder) as well as to tryout composite compaction process modes. Cylindrical billets up to 100 mm in diameter and up to 120 mm in height were obtained based on this technology. Kompal-301, a newly developed and patented composite, has significant advantages compared to the SAS-1-50 sintered aluminum alloy due to 1,5 times lower thermal coefficient of linear expansion and 2–3 times higher precision elastic limit with the same density values. The compacted billet has a resulting matrix structure with disperse silicon excess particles distributed quite uniformly over the aluminum solid solution. There are some larger isolated silicon particles in certain structure areas. Unfortunately, they cause lower billet ductility so it is impossible to produce semi-finished products by plastic deformation. However, such a low ductility has no negative effect on the billet production itself.

About the Authors

V. V. Vasenev
JSC «Kompozit»
Russian Federation

Head of Light alloys sector, Institute of New Metallurgy Technologies (INMT), 

141070, Moscow reg., Korolev, Pionerskaya str., 4



V. N. Mironenko
JSC «Kompozit»
Russian Federation
Cand. Sci. (Tech.), Leading researcher of Light alloys sector, INMT


V. N. Butrim
JSC «Kompozit»
Russian Federation
Cand. Sci. (Tech.), Director of INMT,


O. E. Osintsev
Moscow Aviation Institute (National Research University)
Russian Federation

Dr. Sci. (Tech.), Prof., Department of material science and material treatment technology (MSMTT), 

125993, Moscow, Volokolamskoe shosse, 4



S. Ya. Betsofen
MAI (NRU)
Russian Federation
Dr. Sci. (Tech.), Prof., Department of MSMTT


References

1. Dobatkin V.I., Elagin V.I., Fedorov V.M. Bystrozakristallizovannye alyuminievye splavy [Rapidly quenched aluminum alloys]. Moscow: VILS, 1995.

2. Fridlyander I.N., Kablov E.N. (Ed.). Sozdanie, issledovanie i primenenie alyuminievykh splavov. Izbrannye trudy k 100-letiyu so dnya rozhdeniya [Development, investigation and appliance of aluminum alloys: Selected manuscripts for 100 anniversary]. Mosсow: Nauka, 2013.

3. Bondarev B.N., Shmakov Y.V., Zenina M.V. Iznosostoikie splavy sistemy Al—Si s ponizhennym TKLR. In: Tekhnologiya obrabotki legkikh splavov [Wear-resistant alloys based on Al—Si system powder aluminum with reduced TCLE. In: Technology of processing light alloys]. 1994. P. 202—204.

4. Zuo M., Zhao D., Teng X., Geng H., Zhang Zh. Effect of P and Sr complex modification on Si phase in hypereutectic Al—30Si alloys. Mater. and Design. 2013. Vol. 47. P. 857—864.

5. Gao B., Hu L., Li Sh., Hao Y., Zhang Y., Tu G., Grosdidier Th. Study on the nanostructure formation mechanism of hypereutectic Al—17,5Si alloy induced by high current pulsed electron beam. Appl. Surf. Sci. 2015. Vol. 15. P. 147—157.

6. Rao A.G., Deshmukh V.P., Prabhu N., Kashyap B.P. Ductilizing of a brittle as-cast hypereutectic Al—Si alloy by friction stir processing. Mater. Lett. 2015. Vol. 159. P. 417—419.

7. Kotadia H.R., Das A. Modification of solidification microstructure in hypo- and hyper-eutectic Al—Si alloys under high-intensity ultrasonic irradiation. J. Alloys and Compnd. 2015. Vol. 620. P. 1—4.

8. Li Q., Xia T., Lan Y., Li P., Fan L. Effects of rare earth Er addition on microstructure and mechanical properties of hypereutectic Al—20% Si alloy. Mater. Sci. Eng. 2013. Vol. 588. P. 97—102.

9. Cui C., Schulz A., Schimanski K., Zoch H.-W. Spray forming of hypereutectic Al—Si alloys. J. Mater. Proces. Technol. 2009. Vol. 209. P. 5220—5228.

10. Drid M.E. (Ed.). Svoistva elementov [Properties of elements]. Mosсow: Metallurgiya, 1993.

11. Belov N.A., Eskin D.G., Aksenov A.A. Multicomponent phase diagrams: Application for сommercial aluminum alloys. Elsevier, 2005.

12. Belov N.A., Eskin D.G., Avxeutieva N.N. Constituent phase diagrams of the Al—Cu—Fe—Mg—Ni—Si system and their application to the analysis of aluminium piston alloys. Acta Mater. 2005. No. 53. P. 4709—4712.

13. Aluminium. Properties and physical metallurgy (Ed. J.E. Hatch). Ohio: ASM, 1984.

14. Belov N.A., Aksenov A.A., Eskin D.G. Iron in aluminum alloys: Impurity and alloing element. CSR Press, 2002.

15. Vasenev V.V. Kvitka E.V., Mironenko V.N., Popov A.V. Shmakov Y.V. Soprotivlenie mikroplasticheskoi deformatsii poroshkovykh kompozitsionnykh materialov sistemy Al—Si [Microplastic deformation resistance of Al—Si powder composites]. Deformatsiya i razrushenie materialov. 2008. No. 8. P. 41—44.

16. Lyakishev N.P. (Ed.). Diagrammy sostoyaniya dvoinykh metallicheskikh system: Spravochnik [Phase diagrams of double metallic systems. Vol. 1]. Mosсow: Metallurgiya, 1996.

17. Kulikov I.S. Termodinamika karbidov i nitridov. Spravochnoe izdanie [Carbides and nitrides thermodynamics: Reference edition]. Chelyabinsk: Metallurgiya, 1988.

18. Mironenko V.N., Petrovich S.Y., Cherepanov V.P., Okunev S.A., Vasenev V.V. Poroshkovyi kompozitsionnyi material i sposob ego polycheniya [Powder composite and its production method]: Pat. 2353689 (RF). 2006.

19. Aksenov A.A. Optimizatsiya sostava i struktury kompozitsionnykh materialov na alyuminievoi i mednoi osnove, poluchaemykh zhidkofaznymi metodami i mekhanicheskim legirovaniem [Composition and structure optimization of Al and Cu-based composites, produced with liquid-phase process methods and mechanical alloying]: Abstr. diss. of PhD. Moscow: MISIS, 2007.

20. Aksenov A.A., Solonin A.N., Istomin-Kastrovskii V.V. Struktura i svoistva kompozitsionnykh materialov na osnove alyuminiya, poluchennye metodom mekhanicheskogo legirovaniya v vozdushnoi atmosfere [Structure and properties of composites, produced with mechanical alloying in air environment]. Izv. vuzov. Tsvet. metallurgiya. 2004. Vol. 4. P. 58—66.


Review

For citations:


Vasenev V.V., Mironenko V.N., Butrim V.N., Osintsev O.E., Betsofen S.Ya. DEVELOPMENT OF POWDER COMPOSITE BASED ON AL–SI–NI SYSTEM AND TECHNOLOGY FOR MAKING BILLETS OF THIS COMPOSITE. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(3):41-50. (In Russ.) https://doi.org/10.17073/1997-308X-2017-3-41-50

Views: 937


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)