Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

CONCEPTUAL PROTECTION MODEL FOR STRONGLY HEAT-RESISTANT MATERIALS IN HYPERSONIC OXIDIZING JET FLOWS

https://doi.org/10.17073/1997-308X-2017-3-51-64

Abstract

The article is a continuation of authors’ publications in the field of multi-function protective coatings for strongly heat loaded structural elements of hypersonic systems. The paper suggests a new physical and chemical model of heat-proof coating operation in a high-enthalpy oxidizing gas jet flow. The model considers and eliminates the main causes of surface destruction by the gas flow. The concept is efficiently used to produce a number of Si–TiSi2–MoSi2–B–Y system alloys intended for thin-layer coating formation using any layer deposition method capable of reconstituting the structure, phase composition and morphology of the deposited material. Deposition involves forming a microcomposite layer constructed from the refractory silicide framework with cells filled with a fusible (as compared with the framework phase) eutectic component. This layer transforms into a multilayer system during the high-temperature interaction with oxidizing media (synergetic effect). This multilayer structure contains anti-catalytic, reradiative, anti-erosion, heat-proof, barrier compensating function layers of micron and sub-micron thicknesses. Protection is ensured by a self-healing oxide glassy film formed based on alloyed silica. The self-healing effect consists in the rapid filling of incidental defects by the viscous plastic eutectics and faster (as compared with the known coatings) protection film forming. The branched dendrite cellular refractory framework ensures high resistance to erosion mass loss. The MAI D5 and MAI D5U protective coatings created as part of the presented concept were tested successfully in high-enthalpy oxygen-containing gas flows. The various specimens made of strongly heat-resistant materials were used to depose the coating such as niobium alloys, carbon-carbon and carbon-ceramic composites as well as graphitized carbon materials. The 80–100 μm thick coatings subjected to jet flows with M = 5÷7 and enthalpy 30–40 MJ/kg have shown the protection capacity above 600 s (Tw = 1800 °С), 200 s (Tw = 1900 °С), and 60 s (Tw = 2000 °С) for structural components with sharp edges as well.

About the Authors

V. S. Terentieva
Moscow Aviation Institute (National Research University)
Russian Federation

Dr. Sci. (Eng.), Prof., Department of material sciences, 

125993, Moscow, Volokolamskoe shosse, 4



A. N. Astapov
Moscow Aviation Institute (National Research University)
Russian Federation
Cand. Sci. (Eng.), Associate professor, Department of material sciences


References

1. Astapov A.N., Terentieva V.S. Analiz praktiki rabot po sozdaniyu giperzvukovyh sistem i obespecheniyu ih teplovyh rezhimov (obzor) [Analysis of hypersonic systems design practice and its thermal conditions securing (a survey)]. Teplovye protsessy v tekhnike. 2014. Vol. 6. No. 1. P. 2—11.

2. Astapov A.N., Terentieva V.S. Obzor otechestvennyh razrabotok v oblasti zashhity uglerodsoderzhashhih materialov ot gazovoy korrozii i ehrozii v skorostnyh potokah plazmy [Review of domestic designs in the field of protecting carbonaceous materials against gas corrosion and erosion in high-speed plasma fluxes]. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2014. No. 4. P. 50—70. DOI: 10.17073/1997-308X-2014-4-50-70.

3. Molev G.V., Mirzabekyants N.S. Puti povysheniya stoykosti uglerodnyh materialov k okisleniyu na vozduhe pri povyshennyh temperaturah [Methods for improving the resistance to oxidation of the carbon materials on the air at elevated temperatures]. Khimiya tverdogo topliva. 1998. No. 1. P. 89—100.

4. Opeka M.M., Talmy I.G., Zaykoski J.A. Oxidation-based materials selection for 2000 C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 2004. Vol. 39. No. 19. P. 5887—5904. DOI: 10.1023/B:JMSC.0000041686.21788.77.

5. Ohlhorst C.W., Vaughn W.L., Lewis R.K., Milhoan J.D. Arc jet results on candidate high temperature coatings for NASA’s NGLT refractory composite leading edge task. APS-II-77, JANNAF 27th Airbreathing Propulsion Meeting. Colorado Springs, CO. December 1-5, 2003.

6. Ohlhorst C.W., Vaughn W.L., Daryabeigi K.,, Lewis R.K., Rodriguez A.C., Milhoan J.D., Koenig J.R. Emissivity results on high temperature coatings for refractory composite materials. 29th International Thermal Conductivity Conference (ITCC) and 17th International Expansion Symposium. Birmingham, AL. Jun 24—27, 2007.

7. Yang Ya-zheng, Yang Jia-ling, Fang Dai-ning. Research progress on thermal protection materials and structures of hypersonic vehicles. Appl. Math. Mech. 2008. Vol. 29. No. 1. P. 51—60. DOI: 10.1007/s10483-008-0107-1.

8. Tkachenko L.A., Shaulov A.Yu., Berlin A.A. High-temperature protective coatings for carbon fibers. Inorg. Mater. 2012. Vol. 48. No. 3. P. 213—221. DOI: 10.1134/S0020168512030168.

9. Zmij V.I., Rudenkyi S.G., Shepelev A.G. Complex protective coatings for graphite and carbon-carbon composite materials. Mater. Sci. Appl. 2015. Vol. 6. No. 10. P. 879—888. DOI: 10.4236/msa.2015.610090.

10. Lebedev P.D., Smolin A.G., Terentieva V.S., Holodkov N.V. Rabotosposobnost’ materialov s pokrytiyami v vysokoehntal’piynyh okislitel’nyh gazovyh potokah [The functionality of coated materials in high-enthalpy oxidizing gas flows]. Izvestiya Akademii nauk SSSR. Metally. 1988. No. 5. P. 157—164.

11. Nikitin P.V. Teplovaya zashhita [Thermal protection]. Moscow: MAI, 2006.

12. Kurziner R.I. Reaktivnye dvigateli dlya bol’shih sverhzvukovyh skorostey poleta. Osnovy teorii [Jet engines for strongly supersonic flight velocities. Fundamentals of theory]. Moscow: Mashinostroenie, 1977.

13. Kovalev V.L. Geterogennye kataliticheskie protsessy v aehrotermodinamike [Heterogeneous catalytic processes in aerothermodynamics]. Moscow: Fizmatlit, 2002.

14. Appen A.A. Temperaturoustoichivye neorganicheskie pokrytiia [Temperature stable inorganic coatings]. Leningrad: Khimiia, 1976.

15. Curry D.M., Rochelle W.C., Chao D.C., Ting P.C. Space shuttle orbiter nose cap thermal analysis. AIAA Paper 86-0388. 1986. DOI: 10.2514/6.1986-388.

16. Jacobson N.S. Corrosion of silicon-based ceramics in combustion environments. J. Amer. Ceram. Soc. 1993. Vol. 76. No. 1. P. 3—28. DOI: 10.1111/j.1151-2916.1993.tb03684.x.

17. Brad L. Kirkwood, Elizabeth M. W. Pincha. Silica-enriched protective coating for hypersonic flight vehicles, and method of applying same, including field repair: Pat. 5431961 (USA). 1995.

18. Antonova E.A., Gorbatova G.N., Sazonova M.V., Goryachkovskiy Yu.G., Voshhankin A.N., Konokotin V.V., Kostikov V.I., Kravetskiy G.A., Shurshakov A.N. Sostav dlya naneseniya zashhitnogo pokrytiya na uglerodnye izdeliya [Composition for applying a protective coating on the carbon products]: Pat. 2069208 (RF). 1996.

19. Verzhbitskaia T.M., Leipunskii I.O., Malkin A.I. Izuchenie protsessov degradatsii zashchitnykh pokrytii dlia uglerod-uglerodnykh kompozitsionnykh materialov [Study of degradation of protection coating degradation for carbon-carbonic composite materials]. Izvestiya Akademii nauk. Energetika. 1996. No. 6. P. 50—62.

20. Rodionova V.V., Kravetskiy G.A., Shestakova N.M., Kuznetsov A.V., Kostikov V.I., Demin A.V. Sposob polucheniya zashhitnyh pokrytiy na materialah i izdeliyah s uglerodsoderzhashhey osnovoy [Producing method of protective coatings on carbon containing materials and products]: Pat. 2082694 (RF). 1997.

21. Anatoliy Bondar, Hans Leo Lukas. Mo—Si—Ti (Molybdenum—silicon—titanium). Landolt-Börnstein. Group IV: Physical Chemistry. 2006. Vol. 11A4. P. 385—405. DOI: 10.1007/11008514_34.

22. Scientific Group Thermodata Europe (SGTE). Ternary system Cr—Si—Ti. Landolt-Börnstein. Group IV: Physical Chemistry. 2015. Vol. 19C2. P. 88—94. DOI: 10.1007/978-3-540-88154-4_12.

23. Terentieva V.S. Razrabotka mnogofunkcional’nyh zashchitnyh pokrytij i tekhnologii naneseniya ih na teplonapryazhennye ehlementy konstrukcij GPVRD i GLA [Multi-function protective coatings’ design and technology of their deposition on heat-loaded structural elements of hypersonic ramjets and flying vehicles]: Diss. Dr. Sci. Moscow: MAI, 1990.

24. Frankwicz P.S., Perepezko J.H. Phase stability of MoSi2 in the C11b and C40 structures at high temperatures. Materials Science and Engineering. 1998. Vol. 246. No. 1-2. P. 199—206. DOI: 10.1016/S0921-5093(97)00747-8.

25. Wei F.G., Kimura Y., Mishima Y. Microstructure and phase stability in MoSi2—TSi2 (T = Cr, V, Nb, Ta, Ti) pseudo-binary systems. Mater. Trans. 2001. Vol. 42. No. 7. P. 1349—1355. DOI: 10.2320/matertrans.42.1349.

26. Dolzhanskiy Yu.M., Novik F.S., Chemleva T.A. Planirovanie ehksperimenta pri issledovanii i optimizatsii svoystv splavov [Experiment planning at the study and optimization of alloys’ properties]. Moscow: ONTI, 1974.

27. Terentieva V.S., Bogachkova O.P., Goriatcheva E.V. Sposob zashhity zharoprochnyh materialov ot vozdeystviya agressivnyh sred vysokoskorostnyh gazovyh potokov (varianty) [A method of high-temperature materials protection from the impact of aggressive media and jet flows (some variants)]: Pat. 2082824 (RF). 1994.

28. Terentieva V.S., Bogachkova O.P., Goriatcheva E.V. Method for protecting products made of a refractory material against oxidation, and resulting protected products: Pat. 0703883 (EP). 1994.

29. Terentieva V.S., Bogachkova O.P., Goriatcheva E.V. Method for protecting products made of a refractory material against oxidation, and resulting protected products: Pat. 5677060 (US). 1994.

30. Astapov A.N. Razrabotka vysokotemperaturnyh zashchitnyh pokrytij na uglerodsoderzhashchie kompozicionnye materialy primenitel’no k osobo-teplonagruzhennym ehlementam konstrukcij aviakosmicheskoj i raketnoj tekhniki [Design of high-temperature protective coatings for carbonic composites of strongly heat-loaded structural elements of aviation and space technics]: Diss. PhD. Moscow: MAI, 2011.

31. Zhestkov B.E. Issledovanie termohimicheskoy ustoychivosti teplozashhitnyh materialov [The research of the thermochemical stability of the heat-protection materials]. Uchenye zapiski TsAGI. 2014. Vol. XLV. No. 5. P. 62—77.

32. Zhestkov B.E., Shtapov V.V. Issledovanie sostoyaniya materialov v giperzvukovom potoke plazmy [The research of the materials state in the hypersonic plasma flow]. Zavodskaya laboratoriya. Diagnostika materialov. 2016. Vol. 82. No. 12. P. 58—65.

33. Babichev A.P., Babushkina N.A., Bratkovskiy A.M. et al. Fizicheskie velichiny: Spravochnik [Physical quantities. Reference book]. Moscow: Energoatomizdat, 1991.


Review

For citations:


Terentieva V.S., Astapov A.N. CONCEPTUAL PROTECTION MODEL FOR STRONGLY HEAT-RESISTANT MATERIALS IN HYPERSONIC OXIDIZING JET FLOWS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(3):51-64. (In Russ.) https://doi.org/10.17073/1997-308X-2017-3-51-64

Views: 1059


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)