Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

PHYSICAL AND MECHANICAL PROPERTIES AND WEAR RESISTANCE OF CRN/ALN SYSTEM COATINGS DEPOSITED BY MAGNETRON SPUTTERING

https://doi.org/10.17073/1997-308X-2017-3-65-74

Abstract

The paper presents the results of investigation of CrN/AlN system coatings obtained by magnetron-ion reactive sputtering. Coating versions with a periodic nanocomposite structure with a layer period L = 1,5÷3,2 nm and a relative Cr content in the Cr/(Al + Cr) coating range of 68–85 % are studied. It is found that the coatings have a dense morphology and a columnar grain structure, which is typical for them. For all the samples, diffraction maxima corresponding to the cubic lattice are observed, being a superposition of the two compositions of CrN and AlN coatings. No peaks corresponding to AlN with a hexagonal structure type are recorded. Neither CrAlN peaks are found, that means that no homogeneous coating is formed. Experimental studies of the microhardness, modulus of elasticity, plasticity index and wear resistance of coatings obtained under different spraying conditions are conducted. Measurements showed that the microhardness and modulus of elasticity of the coatings obtained vary between H = 32÷42 GPa and E = 350÷420 GPa, respectively. The maximum plasticity index value H/E = 0,115 is reached at L = 3,2 nm, which corresponds to the coating versions with the greatest hardness. However, the H/E = 0,1 values are also fairly high with a minimum layer period (L = 1,5 nm) and a high Cr content. Abrasive wear coefficients of the coatings obtained vary in the range kс = (2,0÷2,8)·10–13 m3/(N·m). The minimum values of wear are reached at the maximum period of coating layers, i.e. with the greatest hardness, which agrees well with the classical theory of wear. At the same time, high wear resistance is observed at a low L, which indicates a correlation of the values of H/E and kс. Based on the experimental data, a group of neural network models is built that establish the relationship between the deposition process mode parameters (current on magnetrons) with the elemental composition of coatings, as well as the period of coating layers and relative chromium content with the physical and mechanical properties and abrasion resistance of CrN/AlN coatings.

About the Authors

A. V. Aborkin
Vladimir State University named after Alexander and Nikolay Stoletovs
Russian Federation

Cand. Sci. (Eng.), Associate professor, Department of mechanical engineering technology, 

600000, Vladimir, Gorkogo str., 87



V. E. Vaganov
ISMMS RAS
Russian Federation
Dr. Sci. (Eng.), Senior researcher


M. I. Alymov
Institute of Structural Macrokinetics and Materials Science (ISMMS) RAS
Russian Federation

Dr. Sci. (Eng.), Corresponding Member of the RAS, Director,

142432, Moscow reg., Chernogolovka, Akademika Osip’jana str., 8



A. I. Elkin
Vladimir State University
Russian Federation

Cand. Sci. (Eng.), Director of Institute of Mechanical Engineering and Road Transport,

600000, Vladimir, Gorkogo str., 87



I. M. Bukarev
LLC «Marcegaglia RU»
Russian Federation

Engineer,

600020, Vladimir, B. Nizhegorodskaya str., 92B



References

1. Levashov E.A., Petrzhik M.I., Tyurina M.Ya., Kiryukhantsev-Korneev F.V., Tsygankov P.A., Rogachev A.S. Multilayer nanostructured heat-generating coatings. Preparation and certification of mechanical and tribological properties. Metallurgist. 2011. Vol. 54. No. 9-10. P. 623—634.

2. Andrievski R.A. New superhard materials based on nanostructured high-melting compounds: achievements and perspectives. NATO Sci. Ser. II: Mathematics, Physics and Chemistry. 2001. Vol. 16. P. 17-32.

3. Veprek S., Veprek-Heijman M., Karvankova P., Prochazka J. Different approaches to superhard coatings and nanocomposites. Thin Solid Films. 2005. Vol. 476. P. 1—29.

4. Park J.-K., Baik Y.-J. The crystalline structure, hardness and thermal stability of AlN/CrN superlattice coating prepared by D.C. magnetron sputtering. Surf. Coat. Technol. 2005. Vol. 200. P. 1519—1523.

5. Tien S.-K., Duh J.-G. Effect of heat treatment on mechanical properties and microstructure of CrN/AlN multilayer coatings. Thin Solid Films. 2006. Vol. 494. P. 173—178.

6. Tien S.-K., Duh J.-G., Lee J.-W. Oxidation behavior of sputtered CrN/AlN multilayer coatings during heat treatment. Surf. Coat. Technol. 2007. Vol. 201. P. 5138—5142.

7. Tien S.-K., Lin C.-H., Tsai Y.-Z., Duh J.-G. Oxidation behavior, microstructure evolution and thermal stability in nanostructured CrN/AlN multilayer hard coatings. J. Alloys and Compnd. 2010. Vol. 489. P. 237—241.

8. Lin J., Moore J.J., Mishra B., Pinkas M., Sproul W.D. Nano-structured CrN/AlN multilayer coatings synthesized by pulsed closedfield unbalanced magnetron sputtering. Surf. Coat. Technol. 2009. Vol. 204. P. 936—940.

9. Lin J., Hendersonb H.B., Manuelb M.V., Sproul W.D. Nanometer scale chemistry and microstructure of CrN/AlN multilayer films. Appl. Surf. Sci. 2013. Vol. 274. P. 392—396.

10. Schlögla M., Paulitscha J., Mayrhofer P.H. Thermal stability of CrN/AlN superlattice coatings. Surf. Coat. Technol. 2014. Vol. 240. P. 250—254.

11. Nurgajanova O.S., Ganeev A.A. Matematicheskoe modelirovanie vlijaniya legiruyushikh elementov na zharoprochnost’ nikelevykh splavov s monokristallicheskoy strukturoy [Mathematical modeling of the influence of alloying elements on the heat-resistant nickel alloys with a single-crystal structure]. Vestnik UGATU. 2006. Vol. 8. No. 1 (17). P. 91—96.

12. Parfenov E.V., Nev’janceva R.R., Bybin A.A. Obobshennaya matematicheskaya model’ tehnologicheskogo processa yelektrolitno-plazmennogo udaleniya pokrytii [Generalized mathematical model of the process of electrolytic-plasma coating removal]. Vestnik UGATU. 2007. Vol. 9. No. 7 (25). P. 33—40.

13. Kopostelev V.F., Bol’shakov A.E. Razpabotka nejrosetevoy modeli processa kpistallizatsii rasplava pod davleniem [Development of neural network model ofthe melt crystallization process under the pressure]. Mehatronika, avtomatizacija, upravlenie. 2011. No. 10. P. 50—55.

14. Bukarev I.M., Aborkin A.V. Issledovanie svojstv mnogoslojnyh pokrytij [The study of properties of multilayer coatings]. Uprochnjajushhie tehnologii i pokrytiya. 2012. No. 5. P. 16—19.

15. Bukarev I.M., Aborkin A.V. Vlijanie rezhima napylenija na strukturu i svojstva mnogoslojnykh nitridnykh pokrytii [Influence of sputtering modes on the structure and properties of the multilayer nitride coatings]. Uprochnjajushhie tehnologii i pokrytiya. 2013. No. 11. P. 33—38.

16. Yashar P.C., Sproul W.D. Nanometer scale multilayered hard coatings. Vacuum. 1999. Vol. 55. P. 179—190.

17. Lin J., Moore J.J., Mishra B., Pinkas M., Zhang X., Sproul W.D. CrN/AlN superlattice coatings synthesized by pulsed closedfield unbalanced magnetron sputtering with different CrN layer thicknesses. Thin Solid Films. 2009. Vol. 517. P. 5798—5804.

18. Rutherford K.L., Hutchings I.M. A micro-abrasive wear test, with particular application to coated systems. Surf. Coat. Technol. 1996. Vol. 79. P. 231—239.

19. Archard J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953. Vol. 24. No.8. P. 981—988.

20. Imbeni V., Martini C. , Lanzoni E. , Poli G., Hutchings I.M. Tribological behaviour of multi-layered PVD nitride coatings. Wear. 2001. Vol. 251. P. 997—1002.

21. Kisel’ I.V., Neskoromnyj V.N., Ososkov G.A. Primenenie nejronnyh setej v jeksperimental’noj fizike [Application of neural networks in experimental physics]. Fizika elementarnyh chastic i atomnogo jadra. 1993. Vol. 24. No. 6. P. 1551—1595.

22. Schlögl M., Mayer B., Paulitsch J., Mayrhofer P.H. Influence of CrN and AlN layer thicknesses on structure and mechanical properties of CrN/AlN superlattices. Thin Solid Films. 2013. Vol. 545. P. 375—379.

23. Aborkin A.V., Ryabkova V.V., Elkin A.I. Deformation curves for multicomponent nitride and carbide coatings. J. Frict. Wear. 2015. Vol. 36. No. 4. P. 273—279.

24. Shtanskij D.V., Kulinich S.A., Levashov E.A., Moore J.J. Osobennosti struktury i fiziko-mekhanicheskikh svojstv nanostrukturnykh tonkikh plenok [Features of structure and physico-mechanical properties of nanostructured thin films]. Fizika tverdogo tela. 2003. Vol. 45. No. 6. P. 1122—1129.

25. Pogrebnjak A.D., Drobyshevskaja A.A., Beresnev V.M., Kylyshkanov M.K., Kirik G.V., Dub S.N., Komarov F.F., Shipilenko A.P., Tuleushev Ju.Zh. Mikro- i nanokompozitnye zashhitnye pokrytiya na osnove Ti—Al—N/Ni—Cr—B—Si—Fe, ikh struktura i svoystva [Micro- and nano-composite based protective coating on Ti—Al—N/Ni—Cr—B—Si—Fe, their structure and properties]. Zhurnal tehnicheskoj fiziki. 2011. Vol. 81. No. 7. P. 124—131.

26. Aborkin A.V., Ryabkova V.V., Abramov D.V. Friction and wear of nitride and carbide coatings in contact with aluminum. J. Frict. Wear. 2013. Vol. 34. No. 4. P. 294—301.

27. Aborkin A.V., Rjabkova V.V., Sergeev A.V. Issledovanie tribologicheskikh svoystv mnogosloynykh i mnogokomponentnykh vakuumnykh ionno-plazmennykh pokrytiy [The study of tribological properties of multi-layer and multi-component vacuum ion-plasma coatings]. Trenie i smazka v mashinakh i mehanizmakh. 2012. No. 5. P. 12—15.

28. Bukarev I.M., Sobol’kov A.V., Aborkin A.V. Target cleaning for faster CrN/AlN coating growth in magnetron sputtering. Russ. Eng. Res. 2017. Vol. 37. No. 6. P. 502—504.


Review

For citations:


Aborkin A.V., Vaganov V.E., Alymov M.I., Elkin A.I., Bukarev I.M. PHYSICAL AND MECHANICAL PROPERTIES AND WEAR RESISTANCE OF CRN/ALN SYSTEM COATINGS DEPOSITED BY MAGNETRON SPUTTERING. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(3):65-74. (In Russ.) https://doi.org/10.17073/1997-308X-2017-3-65-74

Views: 1283


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)