Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

MICRODIFFRACTION PHASE COMPOSITION ANALYSIS OF LAYER DEPOSITED ON HARDOX 450 STEEL BY WIRE

https://doi.org/10.17073/1997-308X-2017-3-75-82

Abstract

The paper describes single and crosswise (double) surfacing of Hardox 450 steel using the C–Mn–Si–Cr–Nb–W flux-cored wire, and the analysis of the microhardness, phase composition, and defective substructure of built-up layers. The microhardness profile is obtained at a distance from the surface. It is shown that a high-strength surface layer with a microhardness of 10,2 GPa is formed as a result of surfacing. Material microhardness decreases to 6 GPa at a greater distance from the surface of the built-up layer. An increase in the number of built-up layers up to 2 causes thickening of the hardened layer. The paper shows that the microhardness value of this layer does not depend on the number of built-up layers of the weld flux-cored wire. The paper describes the study of the phase composition and defective substructure of a built-up layer by transmission electronic diffraction microscopy methods. It is shown that the thickness of the hardened layer varies from 6,0–6,5 to 7,5 mm for single and double surfacing. It was found that the increase in the built-up layer microhardness was attributable to the formation of a multiphase submicro- and nanosized structure with hardening preconditioned by the hardening effect and the presence of submicron-sized niobium carbide inclusions, the morphology of which essentially depended on the place of formation in the steel structure. It was found that the contact area between the surfacing and the base metal was similar to the structure of the original steel, but hardening of the transition layer occurred due to the presence of carbide phase particles formed by elements of the flux-cored wire.

About the Authors

S. V. Konovalov
Samara National Research University; Siberian State Industrial University (SibSIU)
Russian Federation

Dr. Sci. (Tech.), Associate professor, Head of the Department of metals technology and aviation materials, 443086, Samara, Moskovskoye Shosse, 34;

Chief researcher, Scientific Department, 654007, Novokuznetsk, Kirova str., 42



V. E. Kormyshev
SibSIU
Russian Federation
Engineer of the Physics Department


V. E. Gromov
SibSIU
Russian Federation
Dr. Sci. (Phys. Math.), Prof., Head of the Physics Department


Yu. F. Ivanov
Institute of High Current Electronics Siberian Branch Russian Academy of Sciences (IHCE SB RAS); National Research Tomsk State University (NR TSU)
Russian Federation

Dr. Sci. (Phys. Math.), Prof., Leading researcher, Laboratory of plasma emission electronics, 634021, Tomsk, Akademicheskii av., 2/3;

Leading researcher, Laboratory of low-temperature plasma, 634050, Tomsk, Lenina av., 36



E. V. Kapralov
SibSIU
Russian Federation
Cand. Sci. (Tech.), Engineer, Physics Department


References

1. Zamulaeva E.I., Levashov E.A., Skryleva E.A., Sviridova T.A., Kiryukhantsev-Korneev P.V. Conditions for formation of MAX phase Cr2AlC in electrospark coatings deposited onto titanium alloy. Surf. Coat. Technol. 2016. Vol. 298. P. 15—23. DOI: 10.1016/j.surfcoat.2016.04.058.

2. Shtansky D.V., Sheveiko A.N., Petrzhik M.I., Kiryukhantsev-Korneev F.V., Levashov E.A., Leyland A., Yerokhin A.L., Matthews A. Hard tribological Ti—B—N, Ti—Cr—B—N, Ti—Si—B—N and Ti—Al—Si—B—N coatings. Surf. Coat. Technol. 2005. Vol. 200. No. 1—4. P. 208—212.

3. Lozovan A.A., Frangulov S.V., Chulkov D.A. Structure and composition analysis of multilayer nanocoating deposited onto inner surfaces of tubes by pulsed laser deposition. J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques. 2010. Vol. 4. No. 3. P. 530—533.

4. Ligachev A.E., Kolobov Yu.R., Zhidkov M.V., Golosov E.V., Potemkin G.V., Remnev G.E. Pulsed ion beam induced changes in a submicrocrystalline structure of the near surface layers of austenite steel. Inorgan. Mater.: Appl. Res. 2016. Vol. 7. No. 3. Р. 325—329.

5. Ramazanov K.N., Zolotov I.V., Khusainov Y.G., Khusnutdinov R.F. Improving the operating properties of parts of titanium alloys by surface hardening in high density plasma of glow discharge. J. Phys.: Conf. Ser. 2015. Vol. 652. No. 1, art. No. 012055. DOI: 10.1088/1742-6596/652/1/012055

6. Budilov V.V., Ramazanov K.N., Zolotov I.V., Khucnutdinov R.F., Starovoitov S.V. Ion nitriding of titanium alloys with a hollow cathode effect application. J. Eng. Sci. Technol. Rev. 2015. Vol. 8. No. 6. (Spec. iss.). P. 22—24.

7. Blinkov I.V., Volkhonskii A.O., Anikin V.N., Skryleva E.A. Multilayer TiAlN/ZrNbN/CrN nanocoatings obtained by the Arc-PVD method for hard-alloy cutting tools. Russ. Eng. Research. 2012. Vo. 32. No. 11—12. P. 740—745. DOI: 10.3103/S1068798X12110056

8. Blinkov I.V., Volkhonskii A.O., Kuznetsov D.V., Skryleva E.A. Investigation of structure and phase formation in multilayer coatings and their thermal stability. J. Alloys Compounds. 2014. Vol. 586. No. 1. P. S381—S386. DOI: 10.1016/j.jallcom.2012.11.159

9. Levashov E.A., Zamulaeva E.I., Pogozhev Y.S., Kurbatkina V.V. Nanoparticle dispersion strengthened WC—C based coatings on Ti-alloy produced by sequential chemical reaction assisted pulsed electrospark deposition. Plasma Processes and Polymers. 2009. Vol. 6. No. 1. P. S102—S106. DOI: 10.1002/ppap.200930401.

10. Petrzhik M.I., Levashov E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing. Crystallogr. Rep. 2007. Vol. 52. No. 6. P. 966—974.

11. Levashov E.A., Shtanskij D.V., Kirjuhancev Korneev F.V., Petrzhik M.I. Sovremennoe sostojanie v oblasti poluchenija i issledovanija funkcional’nyh nanostrukturirovannyh pokrytij [Current status in the field of preparation and research of functional nanostructured coatings]. Problemy chernoj metallurgii i materialovedenija. 2009. No. 1. P. 65—88.

12. Elagina O.Y., Gusev V.M., Buklakov A.G., Gantimirov B.M. Study of the wear-resistance of coatings from clad powders under sliding friction with boundary lubrication. J. Frict. Wear. 2015. Vol. 36. No. 3. P. 218—222. DOI: 10.3103/S1068366615030046.

13. Okovity V.A., Shevtsov A.I., Okovity V.V., Astashynski V.M., Kostyukevich E.A. Parameters optimization for plasma spraying and pulsed plasma treatment of surface layers of gas-thermal composite coatings based on multifunctional oxide ceramics. High Temp. Mater. Process. 2014. Vol. 18. No. 1—2. P. 45—62. DOI: 10.1615/HighTempMatProc.2015014363.

14. Arai M., Suidzu T. Porous ceramic coating for transpiration cooling of gas turbine blade. J. Thermal Spray Technol. 2013. Vol. 22. No. 5. P. 690—698. DOI: 10.1007/s11666-013-9883-1.

15. Geras’kina V.V., Baldaeva S.L., Puzryakova A.F., Baldaev L.K.H. Increasing the service life of components by gas thermal spraying of nanostructured materials. Weld. Int. 2011. Vol. 25. No. 3. P. 221—223. DOI: 10.1080/09507116.2010.540876.

16. Zhu Q., Lei Y.-C., Chen X.-Z., Ren W.-J., Ju X., Ye Y.-M. Microstructure and mechanical properties in TIG welding of CLAM steel. Fusion Eng. Design. 2011. Vol. 86. No. 4—5. P. 407—411. DOI: 10.1016/j.fusengdes.2011.03.070.

17. Konovalov S., Chen X., Sarychev V., Nevskii S., Gromov V., Trtica M. Mathematical modeling of the concentrated energy flow effect on metallic materials. Metals. 2017. Vol. 7. No 1. DOI: 10.3390/met7010004.

18. Lei Y.-c., Yuan W.-j., Chen X.-z., Zhu F., Cheng X.-n. In-situ weld-alloying plasma arc welding of SiCp/Al MMC. Trans. Nonferr. Met. Soc. China (Eng. Ed.). 2007. Vol. 17. No 2. P. 313—317. DOI: 10.1016/S1003-6326(07)60091-0.

19. Gromov V.E., Gorbunov S.V., Ivanov Y.F., Vorobiev S.V., Konovalov S.V. Formation of surface gradient structural-phase states under electron-beam treatment of stainless steel. J. Surf. Invest. 2011. Vol. 5. No. 5. P. 974—978.

20. Poletika I.M., Krylova T.A., Tetyutskaya M.V., Makarov S.A. Formation of the structure of wear-resisting coatings in electron beam deposition of tungsten carbide. Weld. Int. 2013. Vol. 27. No. 7. P. 508—515. DOI: 10.1080/09507116.2012.715946.

21. Konovalov S.V., Kormyshev V.E., Ivanov Y.F., Teresov A.D. Electron-beam processing of the hardened layer formed on Hardox 450 steel electric-wire welding system Fe—C—V—Cr—Nb—W. Lett. Mater. 2016. Vol. 6. No. 4. P. 350—354. DOI: 10.22226/2410-3535-2016-4-350-354.

22. Kapralov E., Raikov S., Budovskikh E., Gromov V., Vashuk E., Ivanov Yu. Structural phase states and properties of coatings welded onto steel surfaces using powder. Bulletin of the Russian academy of sciences. Physics. 2014. Vol. 78. No. 10. P. 1015—1021.

23. Popova N., Nikonenko E., Ivanov Yu., Gromov V., Budovskikh E., Raikov S., Kapralov E., Vashuk E. Structure and properties of wear-resistant weld deposit formed on martensitic steel using the electric-arc method. Adv. Mater. Res. 2014. Vol. 1013. P. 194—199.

24. Williams D.B. Practical analytical electron microscopy in materials science. USA. Deerfield Beach, FL: Verlag Chemic Int, 2004.

25. Sindo D., Oikava T. Analiticheskaja prosvechivajushhaja jelektronnaja mikroskopija [Analytical transmission electron microscopy]. Moscow: Tehnosfera, 2006.

26. Kurdjumov V.G., Utevskij L.M., Jentin R.I. Prevrashhenija v zheleze i stali [Transformations in the iron and steel]. Moscow: Nauka, 1977.


Review

For citations:


Konovalov S.V., Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Kapralov E.V. MICRODIFFRACTION PHASE COMPOSITION ANALYSIS OF LAYER DEPOSITED ON HARDOX 450 STEEL BY WIRE. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(3):75-82. (In Russ.) https://doi.org/10.17073/1997-308X-2017-3-75-82

Views: 864


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)