Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

DEFECTS IN LARGE HOLLOW POROUS CYLINDRICAL FILTERS MADE BY SHS

https://doi.org/10.17073/1997-308X-2017-4-4-10

Abstract

The relevance of research is connected with the use of ceramic filters in biology and medicine for fine filtration of air and biological fluids abroad. Due to the unique combination of chemical and thermal resistance, high strength and thermal conductivity, ceramic filters are used to clean aggressive liquids, superheated high pressure steam and other gases. The dependence of burning rate on the relative density and granulometric composition of FeTiO3–Al–Si–SiO2–C powder mixtures is studied. The paper provides experimental results on the influence of initial charge compact density and composition on the quality of products obtained. The main types of defects appearing in the synthesis are identified. The causes of defects are found. Feedstock with particle sizes larger than specified values results in penetrations (cavities) occurring in the product. Their formation is caused by the increased liquid phase content in these regions due to decelerating reaction rate and rising temperature. Higher density results in transverse and longitudinal laminations in the product. Such laminations are formed under the pressure of gaseous products with the low gas permeability of the sample that declines as density increases. The technology of self-propagating high-temperature synthesis of large porous products is developed with the photographs of filtering elements presented: for the typical industrial gas burner GG-2, for superheated steam and demineralized water purification (filtering elements used in polyvinyl chloride process vessels at JSC «Sayanskkhimplast»), for iron removal from artesian water. Defect-free large porous products can be obtained with an optimal ratio of the sample grain size distribution and density, as well as reaction rate and heat removal rate.

About the Authors

R. A. Yusupov
Tomsk scientific center; Siberian branch of the Russian Academy of Sciences (SB RAS)
Russian Federation

Cand. Sci. (Tech.), leader researcher of the Department of structural macrokinetics.

634055, Tomsk, Akademicheskii pr., 10/3



N. I. Afanas’ev
Tomsk scientific center SB RAS
Russian Federation

Dr. Sci. (Phys.-Math.), head of the metal systems laboratory, Department of structural macrokinetics.

634055, Tomsk, Akademicheskii pr., 10/3



A. M. Shul’pekov
Tomsk scientific center SB RAS
Russian Federation

Cand. Sci. (Tech.), leader researcher of the Department of structural macrokinetics.

634055, Tomsk, Akademicheskii pr., 10/3



References

1. Kawai Ch., Matsuura T., Yamakawa A. Separation-permeation performance of porous Si3N4 ceramics composed of columnar β-SI3N4 grains as membrane filters for microfiltration. J. Mater. Sci. 1999. Vol. 34. No. 5. P. 893—896.

2. Yang L., Ning X., Chen K., Zhou H. Preparation and properties of hydroxyapatite filters for microbial filtration. Ceram. Int. 2007. Vol. 33. No. 3. Р. 483—489.

3. Luo M., Gao J., Qiao G., Jin Z. Synthesis of wood-derived ceramics from biological templates. Prog. Chem. 2008. Vol. 20. No. 6. P. 989—1000.

4. Luyten J., Mullens S., Thijs I. Designing with pores-synthesis and applications. Kona Powder Particle J. 2010. Vol. 28. P. 131—142.

5. Jimbo H., Miki N. Gastric-fluid-utilizing micro battery for micro medical devices. Sensors Actuat. B: Chem. 2008. Vol. 134. No. 1. P. 219—224.

6. Hammel E.C., Ighodaro O.L.-R., Okoli O.I. Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 2014. Vol. 40. No. 10. P. 15351—15370.

7. Arte K., Oustek K. Metallokeramicheskie fil’try [Metal ceramic filters]. Moscow: Sudpromgiz, 1959.

8. Belov S.V. Poristye metally v mashinostroenii [The porous metals in engineering]. Moscow: Mashinostroenie, 1981.

9. Andrievskii R.A. Poristye metallokeramicheskie materialy [Porous metal-ceramic materials]. Moscow: Metallurgiya, 1964.

10. Pavlovskaya E.I., Shibryaev B.F. Metallokeramicheskie fil’try [Metalceramic filter]. Moscow: Nedra, 1967.

11. Antsiferov V.N., Peshcherenko S.N. Poristye veshchestva kak novyi klass materialov [The porous material as a new class of materials]. Perspektivnye materialy. 2000. No. 5. P. 5—8.

12. Merzhanov A.G., Borovinskaya I.P. Samorasprostranyayushchiisya vysokotemperaturnyi sintez tugoplavkikh neorganicheskikh soedinenii [SHS refractory inorganic compounds]. Dokl. AN SSSR. 1972. Vol. 204. No. 2. P. 366—369.

13. Kirdyashkin A.I., Maksimov Yu.M., Merzhanov A.G. O vliyanii kapillyarnogo rastekaniya na gorenie bezgazovykh system [On the influence of the capillary spreading of combustion without gas systems]. Fizika goreniya i vzryva. 1981. Vol. 17. No. 6. P. 10—15.

14. Yukhvid V.I. Zakonomernosti fazorazdeleniya v metallotermicheskikh protsessakh [Laws of gas separation processes in metallothermic]. Izv. AN SSSR. Metally. 1980. No. 6. P. 61—64.

15. Makarenko A.G. Tekhnologiya keramicheskikh materialov na osnove SVS s fil’tratsiei gazov [Technology of ceramic materials based on SHS filtering gases]. Izv. vuzov. Tsvetnaya metallurgiya. 2001. No. 2. P. 64—68.

16. Wisutmethangoon S., Denmud N., Sikong L. Characteristics and compressive properties of porous TiNi alloy synthesized bi SHS technique. Mater. Sci. Eng. A. 2009. No. 515. P. 93—97.

17. Hehmet Kaya, Nuri Orhan, Gul Tosun. The effect of the combustion channels on the compressive strength of porous TiNi shape memory alloy fabricated by SHS as implant material. Current Opin. Solis State Mater. Sci. 2010. No. 14. P. 21—25.

18. Frank W. Zok., Carlos G. Levi. Mechanical properties of porous-matrix ceramics composites. Adv. Eng. Mater. 2001. No. 1—2. P. 15—23.

19. Kirdyashkin A.I., Yusupov R.A., Maksimov Yu.M., Kitler V.D. Zakonomernosti tekhnologicheskogo goreniya poroshkovykh system na mineral’noi osnove pri poluchenii poristykh kompozitsionnykh materialov [Laws of the process of burning powder systemic mineral base in the preparation of porous composite materials]. Fizika goreniya i vzryva. 2002. Vol. 38. No. 5. P. 85—89.

20. Yusupov R.A., Kirdyashkin A.I., Balashov V.B. Sposob izgotovleniya poristykh trub [A process for producing porous tubes]: Pat. 1818800 (RF). 1996.

21. Kvanin V.L., Balikhina N.T. Poluchenie krupnogabaritnykh tverdosplavnykh izdelii — odno iz tekhnologicheskikh napravlenii, ispol’zuyushchikh protsess SVS [Production of large-sized carbide products — one of the technological areas using SHS process]. Izv. vuzov. Tsvetnaya metallurgiya. 2006. No. 5. P. 50—61.

22. Vadchenko S.G., Balikhina N.T., Kvanin V.L. Osobennosti goreniya polykh tsilindricheskikh tel [Features burning hollow cylindrical bodies]. Fizika goreniya i vzryva. 2002. Vol. 38. No. 4. P. 53—58.

23. Maznoi A.S., Kirdyashkin A.I., Kitler V.D., Maksimov Yu.M., Yusupov R.A. Strukturnye osobennosti poristykh materialov, sformirovannykh volnoi samorasprostranyayushchegosya vysokotemperaturnogo sinteza [The structural features of porous materials, the wave SHS]. Perspektivnye materialy. 2013. No. 3. P. 5—13.


Review

For citations:


Yusupov R.A., Afanas’ev N.I., Shul’pekov A.M. DEFECTS IN LARGE HOLLOW POROUS CYLINDRICAL FILTERS MADE BY SHS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(4):4-10. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-4-10

Views: 824


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)