Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

PHASE FORMATION IN TI–AL–C SYSTEM DURING SHS

https://doi.org/10.17073/1997-308X-2017-4-11-18

Abstract

The phase formation of Ti–Al–C powder mixtures with compositions close to the composition of the MAX phases in self-propagating high-temperature synthesis (SHS) was investigated using time resolved X-ray diffraction. It is found that material formation during combustion in air under low heat removal rates is a staged process. At the first stage, the dominant is the reaction of titanium carbide formation providing major heat release and combustion front propagation. As a result, TiC crystals surrounded by the Ti–Al melt are formed. Behind the combustion front titanium carbide dissolves in the surrounding melt and then the Ti2AlC ternary compound is crystallized. TiC formation is not observed with the synthesis in helium providing high heat removal rates. The first phase emerging on the diffraction field is Ti2AlC. The TiC life cycle of 5–10 s for air-synthesized mixtures is significantly reduced for helium processes and does not exceed 1 s. SHS reaction in helium yielded a Ti2AlC-based composite containing less than 20 wt.% of TiAl, and 2 wt.% of TiC. The material structure is characterized by laminated Ti2AlC grains surrounded by the TiAl matrix. The microhardness of synthesized materials was 4,0–4,5 GPa that corresponds to that of the Ti2AlC phase. Ti2AlC grains synthesized in helium are smaller than in air. Laminated MAX-phase grain sizes grow up to 8–15 μm in length and 2–5 μm in width at slow air cooling. The Ti2AlC grain size in helium is lower – up to 8 μm in length and 1 μm in width.

About the Authors

D. Yu. Kovalev
Institute of structural macrokinetics and materials science RAS
Russian Federation

Cand. Sci. (Tech.), head of X-Ray investigation Laboratory.

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8



O. A. Averichev
Institute of structural macrokinetics and materials science RAS
Russian Federation

Engineer-researcher, Laboratory of plastic deformation.

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8



M. A. Luginina
Institute of structural macrokinetics and materials science RAS
Russian Federation

Postgraduate student, X-Ray investigation Laboratory.

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8



P. M. Bazhin
Institute of structural macrokinetics and materials science RAS
Russian Federation

Cand. Sci. (Tech.), senior researcher, Laboratory of plastic deformation.

142432, Moscow region, Chernogolovka, Academician Osipyan str., 8



References

1. Barsoum M.W., El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996. Vol. 79. P. 1953—1956.

2. Barsoum M.W., Bridkin D., Raghy T.E. Layered machinable ceramics for high temperature applications. Scr. Metall. Mater. 1997. Vol. 36. P. 535—539.

3. Barsoum M.W. The Мn+1АХn phases: a new class of solids. Prog. Solid St. Chem. 2000. Vol. 28. P. 201—281.

4. Barsoum M.W. MAX phases: properties of machinable ternary carbides and nitrides. 1 ed. N.Y.: Wiley-VCH Verlag GmbH&Co. KGaA, 2013.

5. Rahman A., Rahaman Z. Study on structural, electronic, optical and mechanical properties of MAX phase compounds and applications. Amer. J. Modern Phys. 2015. Vol. 4. No. 2. P. 75—91.

6. Tallman D.J., Anasori B., Barsoum M.W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Mater. Res. Lett. 2013. Vol. 1. P. 115—125.

7. Poon B., Ponson L., Zhao J., Ravichandran G. Damage accumulation and hysteretic behavior of MAX phase materials. J. Mech. Phys. Solids. 2011. Vol. 59. P. 2238—2257.

8. Zhang H.B., Bao Y.W., Zhou Y.C. Current status in layered ternary carbide Ti3SiC2: A review. J. Mater. Sci. Technol. 2009. Vol. 25. No. 1. P. 1—38.

9. Barsoum M.W., Ali M., El-Raghy T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0,5N0,5. Metall. Mater. Trans. A. 2000. Vol. 31. P. 1857—1863.

10. Zhou W.B., Mei B.C., Zhu J.Q., Hong X.L. Rapid synthesis of Ti2AlC by spark plasma sintering technique. Mater. Lett. 2005. Vol. 5. P. 131—139.

11. Новиков А.С., Пайкин А.Г., Шулов В.А. Получение, свойства и перспективы применения МАХ-материалов на основе титана. Упроч. технологии и покрытия. 2006. No. 11. С. 24—34; Novikov A.S., Paikin A.G., Shulov V.A. Poluchenie, svoistva i perspektivy primeneniya MAX-materialov na osnove titana [Preparation, properties and application prospects MAX-titanium-based materials]. Uprochnyaushchie tekhnologii i pokrytiya. 2006. No. 11. P. 24—34.

12. Hendaoui A., Andasmas M., Benaldjia A., Langlois P., Vrel D. SHS of high-purity MAX compounds in the Ti—Al—C system. Int. J. SHS. 2008. Vol. 17. No. 2. Р. 129—136.

13. Vadchenko S.G., Sytschev A.E., Kovalev D.Yu., Shukin A.S, Belikova A.F. SHS of MAX compounds in the Ti—Si—C system: influence of mechanical activation. Int. J. SHS. 2014. Vol. 23. No. 3. P. 141—144.

14. Yeh C.L., Kuo C.W., Chu Y.C. Formation of Ti3AlC2/Al2O3 and Ti2AlC/Al2O3 composites by combustion synthesis in Ti—Al—C—TiO2 systems. J. Alloys Compd. 2010. Vol. 494. P. 132—136.

15. Liu Z., Han Q., Huang Z., Xing J., Gao Y. Sonochemical combustion synthesis of purer Ti2AlC from Ti—Al—C system. Chem. Eng. J. 2016. Vol. 288. P. 532—538.

16. Thomas T., Bowen C. Effect of particle size on the formation of Ti2AlC using combustion synthesis. Ceram. Int. 2016. Vol. 42. P. 4150—4157.

17. Bai Y., He X., Li Y., Zhu C., Zhang S. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo—hot isostatic pressing process. J. Mater. Res. 2009. Vol. 24. No. 8. P. 2528—2535.

18. Lopacinski M., Puszynski J., Lis J. Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J. Am. Ceram. Soc. 2001. Vol. 84. P. 3051—3059.

19. Stolin A.M., Vrel D., Galyshev S.N., Hendaoui A., Bazhin P.M., Sytschev A.E. Hot forging of MAX compounds SHS-produced in the Ti—Al—C system. Int. J. SHS. 2009. Vol. 18. No. 3. Р. 194—197.

20. Галышев С.Н., Бажин П.М., Столин А.М., Сычев А.Е. Синтез металлокерамики на основе Ti—Al—C в условиях свободного СВС-сжатия. Персп. материалы. 2010. No. 2. С. 81—87; Galyshev S.N., Bazhin P.M., Stolin A.M., Sytchev A.E. Sintez metallokeramiki na osnove Ti—Al—C v usloviyakh svobodnogo SVS-szhatiya [Synthesis cermet based on Ti—Al—C in the free compression]. Perspectivnye materialy. 2010. No. 2. P. 81—87.

21. Ponomarev V.I., Kovalev D.Yu. Time-resolved X-ray diffraction during combustion in the Ti—C—B system. Int. J. SHS. 2005. Vol. 14. No. 2. P. 111—117.

22. Пономарев В.И., Хоменко И.О., Мержанов А.Г. Лабораторный метод динамической рентгенографии. Кристаллография. 1995. Т. 40. No. 1. С. 14—17; Ponomarev V.I., Khomenko I.O., Merzhanov A.G. Laboratornyi metod dinamicheckoi rentgenografii [Laboratory method of dynamic X-ray diffraction]. Kristallografiya. 1995. Vol. 40. No. 1. P. 14—17.

23. Konovalikhin S.V., Kovalev D.Yu., Sytschev A.E., Vadchenko S.G., Shchukin A.S. Formation of nanolaminate structures in the Ti—Si—C system: A crystallochemical study. Int. J. SHS. 2014. Vol. 23. No. 4. P. 217—221.


Review

For citations:


Kovalev D.Yu., Averichev O.A., Luginina M.A., Bazhin P.M. PHASE FORMATION IN TI–AL–C SYSTEM DURING SHS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(4):11-18. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-11-18

Views: 1128


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)