PHASE FORMATION IN TI–AL–C SYSTEM DURING SHS
https://doi.org/10.17073/1997-308X-2017-4-11-18
Abstract
About the Authors
D. Yu. KovalevRussian Federation
Cand. Sci. (Tech.), head of X-Ray investigation Laboratory.
142432, Moscow region, Chernogolovka, Academician Osipyan str., 8
O. A. Averichev
Russian Federation
Engineer-researcher, Laboratory of plastic deformation.
142432, Moscow region, Chernogolovka, Academician Osipyan str., 8
M. A. Luginina
Russian Federation
Postgraduate student, X-Ray investigation Laboratory.
142432, Moscow region, Chernogolovka, Academician Osipyan str., 8
P. M. Bazhin
Russian Federation
Cand. Sci. (Tech.), senior researcher, Laboratory of plastic deformation.
142432, Moscow region, Chernogolovka, Academician Osipyan str., 8
References
1. Barsoum M.W., El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996. Vol. 79. P. 1953—1956.
2. Barsoum M.W., Bridkin D., Raghy T.E. Layered machinable ceramics for high temperature applications. Scr. Metall. Mater. 1997. Vol. 36. P. 535—539.
3. Barsoum M.W. The Мn+1АХn phases: a new class of solids. Prog. Solid St. Chem. 2000. Vol. 28. P. 201—281.
4. Barsoum M.W. MAX phases: properties of machinable ternary carbides and nitrides. 1 ed. N.Y.: Wiley-VCH Verlag GmbH&Co. KGaA, 2013.
5. Rahman A., Rahaman Z. Study on structural, electronic, optical and mechanical properties of MAX phase compounds and applications. Amer. J. Modern Phys. 2015. Vol. 4. No. 2. P. 75—91.
6. Tallman D.J., Anasori B., Barsoum M.W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Mater. Res. Lett. 2013. Vol. 1. P. 115—125.
7. Poon B., Ponson L., Zhao J., Ravichandran G. Damage accumulation and hysteretic behavior of MAX phase materials. J. Mech. Phys. Solids. 2011. Vol. 59. P. 2238—2257.
8. Zhang H.B., Bao Y.W., Zhou Y.C. Current status in layered ternary carbide Ti3SiC2: A review. J. Mater. Sci. Technol. 2009. Vol. 25. No. 1. P. 1—38.
9. Barsoum M.W., Ali M., El-Raghy T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0,5N0,5. Metall. Mater. Trans. A. 2000. Vol. 31. P. 1857—1863.
10. Zhou W.B., Mei B.C., Zhu J.Q., Hong X.L. Rapid synthesis of Ti2AlC by spark plasma sintering technique. Mater. Lett. 2005. Vol. 5. P. 131—139.
11. Новиков А.С., Пайкин А.Г., Шулов В.А. Получение, свойства и перспективы применения МАХ-материалов на основе титана. Упроч. технологии и покрытия. 2006. No. 11. С. 24—34; Novikov A.S., Paikin A.G., Shulov V.A. Poluchenie, svoistva i perspektivy primeneniya MAX-materialov na osnove titana [Preparation, properties and application prospects MAX-titanium-based materials]. Uprochnyaushchie tekhnologii i pokrytiya. 2006. No. 11. P. 24—34.
12. Hendaoui A., Andasmas M., Benaldjia A., Langlois P., Vrel D. SHS of high-purity MAX compounds in the Ti—Al—C system. Int. J. SHS. 2008. Vol. 17. No. 2. Р. 129—136.
13. Vadchenko S.G., Sytschev A.E., Kovalev D.Yu., Shukin A.S, Belikova A.F. SHS of MAX compounds in the Ti—Si—C system: influence of mechanical activation. Int. J. SHS. 2014. Vol. 23. No. 3. P. 141—144.
14. Yeh C.L., Kuo C.W., Chu Y.C. Formation of Ti3AlC2/Al2O3 and Ti2AlC/Al2O3 composites by combustion synthesis in Ti—Al—C—TiO2 systems. J. Alloys Compd. 2010. Vol. 494. P. 132—136.
15. Liu Z., Han Q., Huang Z., Xing J., Gao Y. Sonochemical combustion synthesis of purer Ti2AlC from Ti—Al—C system. Chem. Eng. J. 2016. Vol. 288. P. 532—538.
16. Thomas T., Bowen C. Effect of particle size on the formation of Ti2AlC using combustion synthesis. Ceram. Int. 2016. Vol. 42. P. 4150—4157.
17. Bai Y., He X., Li Y., Zhu C., Zhang S. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo—hot isostatic pressing process. J. Mater. Res. 2009. Vol. 24. No. 8. P. 2528—2535.
18. Lopacinski M., Puszynski J., Lis J. Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J. Am. Ceram. Soc. 2001. Vol. 84. P. 3051—3059.
19. Stolin A.M., Vrel D., Galyshev S.N., Hendaoui A., Bazhin P.M., Sytschev A.E. Hot forging of MAX compounds SHS-produced in the Ti—Al—C system. Int. J. SHS. 2009. Vol. 18. No. 3. Р. 194—197.
20. Галышев С.Н., Бажин П.М., Столин А.М., Сычев А.Е. Синтез металлокерамики на основе Ti—Al—C в условиях свободного СВС-сжатия. Персп. материалы. 2010. No. 2. С. 81—87; Galyshev S.N., Bazhin P.M., Stolin A.M., Sytchev A.E. Sintez metallokeramiki na osnove Ti—Al—C v usloviyakh svobodnogo SVS-szhatiya [Synthesis cermet based on Ti—Al—C in the free compression]. Perspectivnye materialy. 2010. No. 2. P. 81—87.
21. Ponomarev V.I., Kovalev D.Yu. Time-resolved X-ray diffraction during combustion in the Ti—C—B system. Int. J. SHS. 2005. Vol. 14. No. 2. P. 111—117.
22. Пономарев В.И., Хоменко И.О., Мержанов А.Г. Лабораторный метод динамической рентгенографии. Кристаллография. 1995. Т. 40. No. 1. С. 14—17; Ponomarev V.I., Khomenko I.O., Merzhanov A.G. Laboratornyi metod dinamicheckoi rentgenografii [Laboratory method of dynamic X-ray diffraction]. Kristallografiya. 1995. Vol. 40. No. 1. P. 14—17.
23. Konovalikhin S.V., Kovalev D.Yu., Sytschev A.E., Vadchenko S.G., Shchukin A.S. Formation of nanolaminate structures in the Ti—Si—C system: A crystallochemical study. Int. J. SHS. 2014. Vol. 23. No. 4. P. 217—221.
Review
For citations:
Kovalev D.Yu., Averichev O.A., Luginina M.A., Bazhin P.M. PHASE FORMATION IN TI–AL–C SYSTEM DURING SHS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(4):11-18. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-11-18