Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

INVESTIGATION OF STRUCTURE FORMATION FEATURES AND PROPERTIES OF COPPER-BASED POWDER PSEUDOALLOYS MODIFIED BY ZnO AND TiN NANOPARTICLE ADDITIVES

https://doi.org/10.17073/1997-308X-2017-4-19-28

Abstract

The multi-method investigation of Cu–ZnO (nano), Cu–TiN (nano) copper-based materials using standard mechanical testing methods along with metallographic, electron-microscopic research using energy-dispersive and thermal analysis allowed to identify stable correlative relationships between the content of nanoparticle additives, microstructure parameters and mechanical-and-physical properties of pseudoalloys. Processing technologies are suggested and justified to improve the uniform distribution of ZnO and TiN modifying nanoparticle additives over the pseudoalloy volume eliminating their conglomeration. The paper proposes novel original methods of nanoparticle introduction to the matrix material as master alloys of Cu–Al–ZnO or copper powders coated with TiN nanoparticles. High surface area and reactive capacity of nanopowders provides for reduced ceramic phase in electrocontact materials (down to 2,0–3,0 % instead of 10–15 % compared with known commercial ones). In this way, general properties typical for matrix materials (copper), i.e. heat and conductivity, remain significantly high, and at the same time, the general level of mechanical-and-physical properties of composite pseudoalloys such as hardness, strength and wear resistance as well as their operational properties is increased. Main properties of copper-based composites include resistivity (ρ ~ 0,025 μΩ·m), strength of bonding to  Тугоплавкие, керамические и композиционные материалы 20 Известия вузов. Порошковая металлургия и функциональные покрытия  4  2017 the contact support material (σ ~ 2 MPa), dispersed ceramic phase inclusions that reduce electroerosive wear (2,5 times) in comparison with conventional materials.

About the Authors

Yu. I. Gordeev
Siberian Federal University (SFU)
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of designing machinery preproduction.

660041, Krasnoyarsk, pr. Svobodnyi, 79



A. K. Abkaryan
Siberian Federal University (SFU)
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of mechanical engineering.

660041, Krasnoyarsk, pr. Svobodnyi, 79



A. V. Surovtsev
Siberian Federal University (SFU)
Russian Federation

Postgraduate student, Department of designing machinery preproduction.

660041, Krasnoyarsk, pr. Svobodnyi, 79



A. A. Lepeshev
Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences
Russian Federation

Dr. Sci. (Phys.-Math.), prof..

660036, Krasnoyarsk, Akademgorodok, 50/50



References

1. Gnesin G.G. Spechennye materialy dlya elektrotekhniki i elektroniki: Sprav. izd. [Sintered materials for electrical engineering and electronics: Reference ed.]. Moscow: Metallurgiya, 1981.

2. Braunovic M., Konchits V.V., Myshkin N.K. Electrical contacts: Fundamentals, applications, and technology. London, N.Y.: CRC Press, Teilorand Francis Group, 2007.

3. Holm H. Electric contacts. Berlin: Springer-Verlag, 2010.

4. Doducodate book of electrical contacts. Doduco GmbH — Stieglitz Verlag, Auflage, Neuauflage, 2012.

5. Zhou D., Qiu F., Wan H., Jian Q. J. Manufacture of nano-sized particle-reinforced metal matrix composites. Rev. Acta Metall. Sin. (Engl. Lett.). 2014. Vol. 27. No. 5. P. 798—805.

6. Slade P.G. High current contacts: A review and tutorial. In: Proc. 21st Intern. Conf. on electrical contacts (Sept. 2002). Zurich, Switzerland: University of Zurich, 2002. P. 413—424.

7. Ahn B.D., Kang H.S., Kim J.H., Jee S.H., Yoon Y.S., Kim D.J. Synthesis and analysis of Ag-doped ZnO. J. Appl. Phys. 2006. No. 100. P. 093701.

8. Dulin F.H., Rase D.E. Phase equilibria in the system ZnO— TiO2. J. Amer. Ceram. Soc. 1960. Vol. 43. No. 3. P. 125—131.

9. Findik F., Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials. Mater. Design. 2003. No. 24. P. 489— 492.

10. Shubin A.A., Sidorak A.V., Ivanov V.V. Synthesis of complex oxides CdO—ZnO—SnO2 for electrical contacts. Russ. J. Appl. Chem. 2014. Vol. 87. No. 3. P. 258—264.

11. Hemmi R., Yokomizu Y., Matsumura T. Anode-fall and cathode-fall voltages of air arc in atmosphere between silver electrodes. J. Phys. D: Appl. Phys. 2003. Vol. 36. P. 1097—1106.

12. Leung C., Streicher E., Fitzgerald D. Welding behavior of Ag/SnO2 contact material with microstructure and additive modifications. In: Proc. 50th IEEE Holm Conf. on electrical contacts and the 22nd Intern. Conf. on electrical contacts (20—24 Sept. 2004). Seattle, USA, 2004. P. 64—69.

13. Gordeev Yu.I., Zeer G.M., Zelenkova E.G., Abkaryan A.K., Surovtsev A.V., Teremov S.G., Plotnikov N.P. Prospects of nanoparticles application in contact of urban electric transport. Russ. J. Non-Ferr. Met. 2012. Vol. 53. No. 4. P. 351—355.

14. Gordeev Yu.I., Abkaryan A.K., Zeer G.M., Lepeshev A.A., Zelenkova E.G. Effect of liquid-phase sintering as means of quality enhancement of pseudoalloys based on copper. In: IOP Conf. Ser. J. Phys. 2017. Vol. 803. P. 012050.

15. Nikolaeva N.S., Ivanov V.V., Shubin A.A., Sidorak A.V. Elektroprovodnost’ kompozita Ag/ZnO na osnove khimicheski osazhdennykh smesei [The conductivity of the composite Ag/ZnO-based chemically precipitated mixtures]. Perspektivnye materialy. 2013. No. 8. Р. 68—73.

16. Zhu Y., Zhou Y. Preparation of pure ZnO nanoparticles by a simple solid-state reaction method. Appl. Phys. A. 2008. Vol. 92. Р. 275—278.

17. Norton D.P., Heo Y.W., Ivill M.P. ZnO: growth, doping and processing. J. Mater. Today. 2004. Vol. 6. P. 34—40.

18. Hahn Y.B. Zinc oxide nanostructures and their applications. Korean J. Chem. Eng. 2011. Vol. 28. No. 9. P. 1797—1813.

19. Andrievski R., Glazer A. Strength of nanostructures. UFN. 2009. Vol. 179. No. 4. P. 337—358.

20. Kolobov Yu.R., Valiev R.Z. Zernogranichnaya diffuziya i svoistva nanostrukturnykh materialov [Grain boundary diffusion and properties of nanostructured materials]. Novosibirsk: Nauka, 2001.

21. Zeer G.M., Zelenkova E.G., Belousov O.V., Beletskii A.A., Nikolaev S.I., Ledyaeva O.N. Elektrokontaktnyi material na osnove serebra, dispersno uprochnennyi nikelem, oksidami titana i tsinka [Electric contact material based on silver, dispersion strengthened by nickel, oxides of titanium and zinc]. Fizika metallov i metallovedenie. 2017. Vol. 118. No. 9. P. 935—940.

22. Zeer G.M. Investigation of the microstructure and properties of electrocontact silver-zinc oxide nanopowder material. Phys. Met. Metallogr. 2012. Vol. 113. No. 9. P. 902—906.

23. Gordeev Y.I., Abkaryan A.К., Binchurov A.V., Yasinsky V.B. Design and investigation of hard metal composites modified by nanoparticles. Adv. Mater. Res. 2014. Vol. 1040. P. 13—18.

24. Korshunov A.V. Razmernye strukturnye effekty v protsessakh okisleniya metallov. [Dimensional structural effects in the metal oxidation process]. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta, 2013.

25. Beloshapko A.G., Bukaemskii A.A., Kuz’min I.G., Staver A.M. Dinamicheskii sintez poroshkov dioksida tsirkoniya [Dynamic synthesis of powders of zirconium dioxide]. Fizika goreniya i vzryva. 1993. Vol. 29. No. 6. P. 111—112.

26. Ushakov A.V., Red’kin V.E., Zharkov S.M., Solov’ev L.A. Vliyanie davleniya gazovoi smesi na svoistva elektrodugovykh poroshkov nitrida titana [The effect of pressure on the properties of the gas mixture of powders of titanium nitride electric]. Neorganicheskie materialy. 2003. Vol. 39. No. 3. P. 337—341.


Review

For citations:


Gordeev Yu.I., Abkaryan A.K., Surovtsev A.V., Lepeshev A.A. INVESTIGATION OF STRUCTURE FORMATION FEATURES AND PROPERTIES OF COPPER-BASED POWDER PSEUDOALLOYS MODIFIED BY ZnO AND TiN NANOPARTICLE ADDITIVES. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(4):19-28. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-19-28

Views: 1259


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)