Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

DEVELOPMENT OF TECHNOLOGY TO PRODUCE CAST ALUMINUM MATRIX COMPOSITE BY ALUMINA STRENGTHENING PHASE SYNTHESIS IN ALUMINUM MELT

https://doi.org/10.17073/1997-308X-2017-4-29-36

Abstract

Currently, critical components and assemblies made of traditional materials not always meet the increased requirements of designers and service conditions. One of the solutions to this problem is the development and application of dispersion strengthened metal matrix composites. According to the information analysis review, the paper suggests a new technology to produce dispersion strengthened aluminum-based composite. Features of the developed technology are specified along with both sample macroand microstructures and mechanical characteristics of as-cast samples. Strengthening particles are synthesized directly in the melt so that composites can be produced in a single stage with high thermodynamic stability, dense contact and good adhesion between the matrix and the strengthening phase. The reached particle sizes of a solid interstitial phase range from 3 μm to 2 mm. The structural and phase state of the produced material was studied using optical metallography and the X-ray diffraction analysis (Dron-2 diffractometer). The microstructure was investigated using the Keyence VHX-1000 microscope. Measurements were carried out using TKS-1M to determine microstructure, PMT-3 and HMV Shumadzu to determine hardness, ZD 10/90 and UME-10TM universal tensile testers to determine tensile strength, and MK-30a pendulum impact tester to determine impact strength. It is found that the variation in the strengthening phase size and content allows changing mechanical properties of cast metal over a wide range. Estimate calculations show an expected reduction in the cost of dispersion strengthened composite production.

About the Authors

E. A. Chernyshov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU)
Russian Federation

Dr. Sci. (Tech.), prof., Department of metallurgical technology and equipment.

603950, Nizhny Novgorod, Minina str., 24



A. D. Romanov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU)
Russian Federation

Engineer of Research laboratory of transport intelligent systems.

603950, Nizhny Novgorod, Minina str., 24



E. A. Romanova
Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU)
Russian Federation

Engineer of Research laboratory of transport intelligent systems.

603950, Nizhny Novgorod, Minina str., 24



V. V. Mylnikov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of building technology and equipment.

603095, Nizhny Novgorod, Il’inskaya str., 65



References

1. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] Aviatsionnye materialy i tekhnologii. 2012. No. S. P. 7—17.

2. Luts A.R., Galochkina I.A. Alyuminievye kompozitsionnye splavy — splavy budushchego [Aluminum composite alloys — future alloys.] Samara: Samarskii gosudarstvennyi tekhnicheskii universitet, 2013.

3. Chernyshova T.A., Kurganova Yu.A., Kobeleva L.I., Bolotova L.K., Kalashnikov E.A., Katin I.V., Panfilov A.V., Panfilov A.A. Kompozitsionnye materialy s matritsei iz alyuminievykh splavov, uprochnennykh chastitsami, dlya par treniya skol’zheniya [Composite materials with a matrix from the aluminum alloys strengthened by particles for couples of a sliding friction]. Konstruktsii iz kompozitsionnykh materialov. 2007. No. 3. P. 39—48.

4. Panfilov A.A., Prusov E.S., Kechin V.A. Problemy i perspektivy razvitiya proizvodstva i primeneniya alyumomatrichnykh kompozitsionnykh splavov [Problema and prospect of development of production and application the alyumomatrichnykh of composite alloys]. Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.E. Alekseeva. 2013. No. 2. P. 210—218.

5. Kurganova Yu.A. Perspektivy razvitiya metallomatrichnykh kompozitsionnykh materialov promyshlennogo naznacheniya [Prospects of development of metalmatrix composite materials of industrial function]. Servis v Rossii i za rubezhom. 2012. No. 3. P. 235—240.

6. Adebisi A.A., Maleque M.A., Rahman M.M. Metal matrix composite brake rotor: historical development and product life cycle analysis. Int. J. Automot. Mech. Eng. 2011. Vol. 4. Р. 471—480

7. Mortensen A., Cornie J.A., Flemings M.C. Solidification processing of metal matrix composites. JOM. 1988. Vol. 40 (2). P. 12—19. DOI: 10.1007/BF03258826.

8. Geiger A.L., Walker J.A. The processing and properties of discontinuously reinforced aluminium composite. JOM. 1991. Vol. 43. P. 8—15. DOI: 10.1007/BF03221097.

9. Liu Yao-Hui, Du Jun, Yu Si-rong, Wang Wei. High temperature friction and wear behaviour of Al2O3 and/or carbon short fibre reinforced Al—12Si alloy composites. Wear. 2004. Vol. 256. P. 275—285. DOI: 10.1016/S0043-1648(03)00387-9.

10. Chernyshov E.A., Romanov A.D., Romanova E.A. Razvitie materialov ballisticheskoi zashchity na osnove alyuminievykh splavov [Development of ballistic protection materials based on aluminum alloys]. Zagotovitel’nye proizvodstva v mashinostroenii. 2015. No. 10. P. 43—47.

11. Kumar P. Vijaya, Madhusudhan G. Reddy, Srinivasa Rao K. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone. Effect of post weld heat treatment and addition of boron carbide. Defence Technol. 2015. Vol. 11. P. 166—173. URL: http://dx.doi.org/10.1016/j.dt.2015.01.002.

12. Komkova T.Yu., Kholin M.S., Chernyshova P.I. Razrabotka kompozitsionnogo materiala sistemy Al—Al2O3, poluchaemogo metodom plasticheskoi deformatsii [Development of composite material systems Al—Al2O3 obtained by the method of plastic deformation]. Sovremennye problem nauki i obrazovaniya. 2015. No. 2. P. 164—168.

13. Chien Chon Chen, Chih Yuan Chen, Hsi Wen Yang, Yang Kuao Kuo, Jin Shyong Lin. Phase equilibrium in carbothermal reduction Al2O3 → AlN studied by thermodynamic calculations atlas. J. Mater. Sci. 2014. No. 1 (2). P. 30—37. DOI: 10.5147/ajms.2014.0172.

14. Vlasova M., Kakazey N., Rosales I., Krushinskaya L., Bykov A., Tomila T., Voitsehovskaya E., Vinokurov V. Synthesis of composite AlN—AlON—Al2O3 powders and ceramics prepared by high-pressure sintering. Sci. Sinter. 2010. No. 42. P. 283—295. DOI: 10.2298/SOS1003283V.

15. Afanas’ev V.K., Gertsen V.V., Dolgova S.V., Musokhranov Yu.M., Popova M.V. O vliyanii vodyanogo para na formirovanie svoistv vysokokremnistykh Al-splavov [About the influence of water vapor on the formation of properties of high-silicon Al alloys]. Metallurgiya mashinostroeniya. 2015. No. 5. P. 17—22.

16. Orlov A.V., Luts A.R., Kandalova E.G., Makarenko A.G. Tekhnologiya polucheniya kompozita Al—TiС iz poroshkovykh ekzotermicheskikh smesei neposredstvenno v rasplave alyuminiya [The technology of obtaining composite Al—TiС of exothermic powder mixtures directly in the melt of aluminium]. Zagotovitel’nye proizvodstva v mashinostroenii. 2005. No. 11. P. 54—61.

17. Mohsen Hossein-Zadeh, Mansour Razavi, Omid Mirzaee, Razieh Ghaderi. Characterization of properties of Al—Al2O3 nano-composite synthesized via milling and subsequent casting. J. King Saud Univ. — Eng. Sci. 2013. No. 25. P. 75—80. URL: http://dx.doi.org/10.1016/j.jksues.2012.03.001.

18. Dinesh Kumar Koli, Geeta Agnihotri, Rajesh Purohit Properties and characterization of Al—Al2O3 composites processed by casting and powder metallurgy routes (Review). Int. J. Latest Trends Eng. Technol. (IJLTET). 2013. Vol. 2. Iss. 4. P. 486—493.

19. Anisimov O.V. Tekhnologiya polucheniya kompozitsionnykh materialov na osnove alyuminiya, uprochnennykh dispersnymi nanochastitsami ZrO2 i SiC v pole tsentrobezhnykh sil tsentrifugi [The technology of obtaining composite materials based on aluminum, reinforced with dispersed nanoparticles of ZrO2 and SiC in the field of centrifugal forces centrifuges]: Abstract of the dissertation of PhD. Moscow: MAMI, 2012.

20. McDanels D.L., Signorelli A.R. Evaluation of low cost aluminum composites for aircraft engine structural applications. NASA Tech. Memo. No. 83357. Washington, DC, 1983

21. Chernyshov E.A., Romanova E.A., Romanov A.D. Razrabotka teplovydelyayushchego elementa na osnove vysokometallizirovannogo bezgazovogo topliva [Development of fuel cells based on vysokomehanizirovannoe gasless fuel]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Mashinostroenie. 2015. No. 6 (105). P. 74—81.

22. Chernyshov E.A., Myl’nikov V.V., Myl’nikova M.V., Romanov A.D., Romanova E.A. Sozdanie metallokeramicheskikh elementov ballisticheskoi zashchity s primeneniem keramiki na osnove alyuminiya [Creation of ceramic-metal elements of ballistic protection with use of ceramics on the basis of aluminum]. Sovremennye naukoemkie tekhnologii. 2014. No. 4. P. 97—100.


Review

For citations:


Chernyshov E.A., Romanov A.D., Romanova E.A., Mylnikov V.V. DEVELOPMENT OF TECHNOLOGY TO PRODUCE CAST ALUMINUM MATRIX COMPOSITE BY ALUMINA STRENGTHENING PHASE SYNTHESIS IN ALUMINUM MELT. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(4):29-36. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-29-36

Views: 1198


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)