Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

MICROSTRUCTURE AND PROPERTIES OF PARTS PRODUCED BY DIRECT LASER DEPOSITION OF 316L STEEL POWDER

https://doi.org/10.17073/1997-308X-2017-4-44-52

Abstract

Direct laser deposition of metal powders is one of the additive methods of functional product manufacturing. It consists in metallic powder melting with laser beams in the inert gas atmosphere. Main process parameters include laser beam power, speed, scanning strategy and powder consumption. Each of the parameters is selected depending on the alloy type that jointly affects the structure and defect formation in products. The present paper shows that the experimental rectangular specimens of powder austenitic steel 316L were obtained by direct laser deposition. The microstructure and fractures of samples were studied using scanning electron microscopy in order to determine the structural features and identify any defects (pores, holes, crystallization cracks and oxide inclusions). Uniaxial tensile tests and hardness tests were carried out. The effect of laser beam scanning strategy on the microstructure and properties of samples when melting was analyzed It was observed that a dispersed structure with an average crystallite size of 1,3–1,9 μm is formed at 250 W laser power and 16 mm/s scanning speed that causes a high level of mechanical properties of experimental samples. It was shown that tensile strength at the lengthwise strategy (along the largest sample size) was up to 730 MPa with an elongation rate 25 % that exceeded 316L steel mechanical properties by 110 MPa.

About the Authors

I. S. Loginova
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Engineer of the Department «Physical metallurgy of non-ferrous metals».

119049, Moscow, Leninskii pr., 4


D. P. Bykovskiy
National Research Nuclear University (NRNU) «MEPhI»
Russian Federation

Engineer of the Department «Laser physics».

115409, Moscow, Kashirskoe highway, 31



A. N. Solonin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), head of the Department «Physical metallurgy of non-ferrous metals».

119049, Moscow, Leninskii pr., 4



A. S. Prosviryakov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), senior researcher of the Department «Physical metallurgy of non-ferrous metals».

119049, Moscow, Leninskii pr., 4



V. V. Cheverikin
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), senior researcher of the Department «Physical metallurgy of non-ferrous metals».

119049, Moscow, Leninskii pr., 4


A. V. Pozdniakov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Associate prof. of the Department «Physical metallurgy of non-ferrous metals».

119049, Moscow, Leninskii pr., 4



V. N. Petrovskiy
National Research Nuclear University (NRNU) «MEPhI»
Russian Federation

Cand. Sci. (Phys.-Math.), associate prof. of the Department «Laser physics.

115409, Moscow, Kashirskoe highway, 31



References

1. Mingming M., Zemin W., Dengzhi W., Xiaoyan Z. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel. Opt. Laser Technol. 2013. Vol. 45. Р. 209—216.

2. Srivastava D.I., Chang I.T., Loretto M.H. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics. 2001. Vol. 9. P. 1003—1013.

3. Dongdong G., Yves-Christian H., Meiners W., Meng G., Batista Santos R.J., Wissenbach K., Poprawe R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012. Vol. 60. P. 3849—3860.

4. Xiang X., Gaoyang M., Yuanqing L., Ping J., Xinyu S., Chunming W. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire. Opt. Lasers Eng. 2017. Vol. 94. P. 1—11.

5. Mingming M., Zemin W., Xiaoyan Z. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater. Sci. Eng. A. 2017. Vol. 685. P. 265—273.

6. Dewidar M.M., Dalgarno K.W., Wright C.S. Processing conditions and mechanical properties of high-speed steel parts fabricated using direct selective laser sintering. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2003. Vol. 217. P. 1651—1662.

7. Yadroitsev I., Smurov I. Surface morphology in selective laser melting of metal powders. Phys. Procedia A. 2011. Vol. 12. P. 264—270.

8. Yasa E., Kruth J. Application of laser re-melting on selective laser melting parts. Adv. Product. Eng. Manag. 2011. Vol. 6. No. 4. P. 259—270.

9. Brandt M. The role of lasers in additive manufacturing. In: Materials, design, technologies, and applications. Electronic and Optical Materials. 2017. P. 1—18.

10. Yali L., Dongdong G. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Design. 2014. Vol. 63. P. 856—867.

11. Tabernero I., Lamikiz A.., Martinez S., Ukar E., Figueras J. Evaluation of the mechanical properties of Inconel 718 components built by laser cladding. Int. J. Machine Tools Manuf. 2011. Vol. 52. P. 465—470.

12. Doubenskaia M., Pavlov M., Grigoriev S., Tikhonova E., Smurov I. Comprehensive optical monitoring of selective laser melting. JLMN — J. Laser Micro/Nanoeng. 2012. Vol. 7. No. 3. P. 236—243.

13. Marcua T., Todeab M., Gligora I., Bercec P., Popa C. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl. Surf. Sci. 2012. Vol. 258. P. 3276—3282.

14. Ruidi L., Yusheng S., Zhigang W., Li W., Jinhui L., Wei J. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 2010. Vol. 256. P. 4350—4356.

15. Wang D., Song C., Yang Y., Bai Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Design. 2016. Vol. 100. Р. 291—299.

16. Wang X., Deng D., Qi M., Zhang H. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication. Opt. Laser Technol. 2016. Vol. 80. Р. 138—144.

17. Zhang B., Dembinski L., Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater. Sci. Eng. A. 2013. Vol. 584. Р. 21—31.

18. Zhang K., Wang S., Liu W., Shang X. Characterization of stainless steel parts by Laser Metal Deposition Shaping. Mater. Design. 2014. Vol. 55. Р. 104—119.

19. Yadollahi A., Shamsaei N., Thompson S.M., Seely D.W. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater. Sci. Eng. A. 2015. Vol. 644. Р. 171—183.

20. Cheikh H.E., Courant B., Branchu S., Huang X., Hascoet J.-Y., Guillen R. Direct laser fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures. Opt. Lasers Eng. 2012. Vol. 50. Р. 1779—1784.

21. Olakanmi E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al—Mg, and Al—Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol. 2013. Vol. 213. Р. 1387—1405.

22. Попкова И.С., Золоторевский В.С., Солонин А.Н. Производство изделий из алюминия и его сплавов методом селективного лазерного плавления. Технол. Легких сплавов. 2015. No. 4. C. 14—24; Popkova I.S., Zolotorevsky V.S., Solonin A.N. Proizvodstvo izdelii iz alyuminiya i ego splavov metodom selektivnogo lasernogo plavleniya [Manufacturing of details by selective laser melting of aluminium alloys]. Tekhnologiya legkikh splavov. 2015. No. 4. Р. 14—24.

23. ГОСТ 25849-83. Порошки металлические. Метод определения формы частиц. М.: Изд-во стандартов, 1983; GOST 25849-83. Poroshki metallicheskie. Metod opredeleniya formy chastits [Metallic powders. Method for determination of particle shape]. Moscow: Izdatel’stvo standartov, 1983.

24. ГОСТ 23402-78. Порошки металлические. Микроскопический метод определения размеров частиц. М.: Гос. комитет СССР по стандартам, 1985; GOST 23402-78. Poroshki metallicheskie. Mikroskopicheskii metod opredeleniya razmerov chastits [Metallic powders. Microscopic method for determining particle size]. Moscow: Gosudarstvennyi komitet SSSR po standartam, 1989.

25. ГОСТ 2999-75. Металлы и сплавы. Методы измерения твердости по Виккерсу. М.: Гос. комитет СССР по стандартам, 1987; GOST 2999-75. Metally i splavy. Metody izmereniya tverdosti po Vikkersu [Metals and alloys. Methods of measuring the Vickers hardness]. Moscow: Gosudarstvennyi komitet SSSR po standartam, 1987.

26. ГОСТ 1497-84. Металлы. Методы испытаний на растяжение. М.: Изд-во стандартов, 1993; GOST 1497-84. Metally. Metody ispytanii na rastyazhenie [Metals. Tensile test methods]. Moscow: Izdatel’stvo standartov, 1993.


Review

For citations:


Loginova I.S., Bykovskiy D.P., Solonin A.N., Prosviryakov A.S., Cheverikin V.V., Pozdniakov A.V., Petrovskiy V.N. MICROSTRUCTURE AND PROPERTIES OF PARTS PRODUCED BY DIRECT LASER DEPOSITION OF 316L STEEL POWDER. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(4):44-52. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-44-52

Views: 1167


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)