INVESTIGATION OF SURFACE STRUCTURE, CRYSTALLOGRAPHIC TEXTURE, MICROTOPOGRAPHY OF FUNCTIONAL COATINGS DEPOSITED USING FLEXIBLE TOOL AND SOME APPLICATIONS. Part 1. Surface structure, crystallographic texture, microtopography of copper and brass coatings deposited on steel base using flexible tool
https://doi.org/10.17073/1997-308X-2017-4-62-70
Abstract
The paper focuses on metal surface nanostructuring and functional coating application using a flexible tool – rotating wire brushes (RWB). This process called friction cladding implemented on lathes, grinders and other machine tools using ordinary tooling or manual angle grinders. Metallographic investigation of surface layers used 3×20×100 mm plates made of Steel 08 as study samples. Coatings were applied using the surface grinder where RWB was installed instead of an abrasive disk together with a coating material feeding device. Cylindrical samples (Steel 50) 20 mm in diameter were machined by angle grinders installed on the sliding carriage of the lathe. Optical microscopes and the JSM-6490 LV electron-scan microscope (ESM) were used for metallographic research. Electron microscopic studies were performed by replica technique using the Tesla BC-613 electron microscope. X-ray diffraction analysis was performed on the Dron-3 diffractometer. Measurements and surface roughness analysis were performed according to the GOST R ISO 25178 method on the Bruker Contour GT K1 unit. The surface structure, texture and microtopography of copper and brass coatings deposited using a flexible tool on a steel base were investigated. The average coating thickness was 20–25 μm, microhardness was about 6800 MPa for the copper coating and 9000 MPa for the brass coating with particle sizes ranging from 0,3 to 0,6 μm. The crystallographic texture of the coating reproduces the texture of the steel base material. Investigation of sample surface microtopography before and after coating showed that the brass coating substantially smoothes out the surface, but the initial microtopography is changed insignificantly. Copper coating microtopography differs substantially from the initial one.
About the Authors
I. V. BelevskayaRussian Federation
Postgraduate student of the Department «Design and exploitation of metallurgical of machinery and equipment».
455000, Magnitogorsk, Lenina av., 38
L. S. Belevskii
Russian Federation
Dr Sci. (Tech.), professor of the Department «Design and exploitation of metallurgical of machinery and equipment».
455000, Magnitogorsk, Lenina av., 38
E. V. Gubarev
Russian Federation
Assistant of the Department of physics.
455000, Magnitogorsk, Lenina av., 38
Yu. Yu. Efimova
Russian Federation
Cand. Sci. (Tech.), associate prof. of the Department «Material processing technologies».
455000, Magnitogorsk, Lenina av., 38
References
1. Chukin M.V., Golubchik A.G., Korchunov A.G., Polyakova M.A., Koptseva N.V., Efimova Yu.Yu., Emaleeva D.G., Gulin A.E., Konstantinov D.V., Kuznetsova A.S. Adaptivnye podkhody k konstruirovaniyu tekhnologicheskikh protsessov i upravleniyu kachestvom metalloproduktsii [Adaptive approaches to designing technological processes and quality control of steel products]. Saint Petersburg: Piter, 2016.
2. Chukin M., Korchunov A., Polyakova M., Emaleeva D. Forming ultrafine-grain structure in steel wire by continuous deformation. Steel in Transl. 2010. No. 40 (6). Р. 595—597.
3. Polyakova М., Calliari I., Gulin A. Effect of microstructure and mechanical properties formation of medium carbon steel wire through continuous combined deformation. Key Eng. Mater. 2016. Vol. 716. Р. 201—207.
4. Chukin M.V., Polyakova M.A., Gulin A.E. Influence of hybrid plastic deformation on the microstructure and mechanical properties of carbon-steel wire. Steel in Transl. 2016. Vol. 46. No. 8. Р. 548—551.
5. Panin V.E., Sergeev V.P., Panin A.V. Nanostrukturirovanie poverkhnostnykh sloev konstruktsionnykh materialov i nanesenie nanostrukturnykh pokrytii [The nanostructuring of the surface layers of constructional materials and application of nanostructured coatings]. Tomsk: Tomskii politekhnicheskii un-t, 2008.
6. Voevodin A.A., Shtansky D.V., Levashov A.E., Moore J.J. Nanostructured thin films and nanodispersion strengthened coatings. Springer, 2005.
7. Kablov E.A., Muboyadzhan S.A., Lutsenko A.N. Nanostrukturnye ionoplazmennye zashchitnye i uprochnyayushchie pokrytiya dlya lopatok gazoturbinnykh dvigatelei [Nanostructured ion-plasma protective and strengthening coatings for blades of gas turbine engines]. Voprosy materialovedeniya. 2008. No. 2 (54). P. 175—186.
8. Zhetesova G.S., Zhukova A.V., Zhunusnekov D.S., Pleshakova E.A. Tekhnologiya naneseniya nanostrukturnykh mnogofunktsional’nykh pokrytii na detali [Technology of applying of nanostructured multifunctional coating for details]. Mezhdunarodnyi zhurnal eksperimental’nogo obrazovaniya. 2012. No. 10. P. 36—39.
9. Kogan B.I., Maitakov A.N. Primenenie i otsenka effektivnosti nanostrukturnykh materialov dlya povysheniya nadezhnosti rabochikh elementov pishchevykh mashin [Application and efficiency evaluation nanostructured materials to improve the reliability of the working elements of food machines]. Vestnik Kuzbasskogo gosud. tekhn. un-ta. 2009. No. 6. P. 84—85.
10. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A. 2004. Vol. 375—377. P. 38—45.
11. Li W.L., Tao N.R., Lu K. Fabrication of a gradient nano-micro-structuredsurface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 2008. Vol. 59. P. 546—549.
12. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior. Wear. 2000. Vol. 246. P. 1—11.
13. Sosnin N.A., Ermakov S.A., Topolyanskii P.A. Plazmennye tekhnologii: Rukovodstvo dlya inzhenerov [Plasma technologies: Guide for engineers]. Saint Petersburg: Izdatel’stvo politekhnicheskogo un-ta, 2008.
14. Belevskii L.S., Belevskaya I.V., Efimova Yu.Yu. Friktsionnaya nanostrukturiruyushchaya obrabotka metallicheskikh poverkhnostei i nanesenie funktsional’nykh pokrytii gibkim instrumentom [Friction nanostructuring treatment of metallik surfaces and deposition of functional coatings using a elexible tool]. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2014. No. 1. P. 70—76.
15. Belevskii L.S. Nanesenie zashchitnykh metallicheskikh pokrytii mekhanicheskim sposobom [Application of protective metal coatings by mechanical technology]. Zashchita metallov. 1988. Vol. 24. No. 2. P. 323—325
16. Belevskii L.S. Plasticheskoe deformirovanie poverkhnostnogo sloya i formirovanie pokrytiya pri nanesenii gibkim instrumentom [Plastic deformation of the surface layer and the formation of the coating applied by flexible tool]. Magnitogorsk: Litsei RAN, 1996.
17. Antsupov V.P., Belov V.K., Savel’ev V.B. Issledovanie parametrov poverkhnostnogo sloya pri deformatsionnom plakirovanii gibkim instrumentom [Investigation of the parameters of the surface layer under deformation cladding by a flexible tool]. Trenie i iznos. 1995. Vol. 15. No. 2. Р. 212—217.
18. Antsupov V.P. Teoriya i praktika plakirovaniya gibkim instrumentom [Theory and practice of cladding by flexible tool]. Magnitogorsk: MGTU im. G.I. Nosova, 1999.
19. Zavalishchin A.N., Smirnov O.M., Tulupov S.A. Modifikatsiya poverkhnosti metallicheskikh izdelii s ispol’zovaniem pokrytii [Surface modification of metal products by coatings]. Moscow: Orbita-M, 2012.
20. Platov S.I., Dema R.R., Zotov A.V. Model’ formirovaniya tolshchiny plakirovannogo sloya na detalyakh par treniya tekhnologicheskogo oborudovaniya [The model of formation of a clad layer thickness on the details]. Vestnik MGTU im. G.I. Nosova. 2013. No. 1. P. 69—72.
21. Levantsevich M.A., Maksimenko N.N. Uluchshenie ekspluatatsionnykh kharakteristik detalei poverkhnostnym modifitsirovaniem metodom plakirovaniya gibkim instrumentom [Improvement of operating characteristics of parts by surface modification by cladding method by flexible tool]. Uprochnyayushchie tekhnologii i pokrytiya. 2015. No. 10. P. 16—20.
22. ISO/TR 25178:2012. Geometrical product specifications (GPS) — Surface texture: Areal-terms, definitions and surface texture parameters.
23. Poon C.Y., Sayles R.S. The classification of rough surface contacts in relation to tribology. J. Phys. D. 1992. Vоl. 25. No. 1A. Р. A249—A256.
Review
For citations:
Belevskaya I.V., Belevskii L.S., Gubarev E.V., Efimova Yu.Yu. INVESTIGATION OF SURFACE STRUCTURE, CRYSTALLOGRAPHIC TEXTURE, MICROTOPOGRAPHY OF FUNCTIONAL COATINGS DEPOSITED USING FLEXIBLE TOOL AND SOME APPLICATIONS. Part 1. Surface structure, crystallographic texture, microtopography of copper and brass coatings deposited on steel base using flexible tool. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2017;(4):62-70. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-62-70