PROSPECTS OF PRODUCTION AND APPLICATION OF TITANIUM ALLOY AND NITINOL HYBRID STRUCTURES AND COMPOSITES.OVERVIEW
https://doi.org/10.17073/1997-308X-2017-4-71-78
Abstract
Titanium-based alloys are widely used in various industries thanks to a combination of high mechanical properties and low density. The most effective use of these properties is making aircraft components and medical implants. Shape memory alloys based on titanium nickelide (nitinol) are promising materials for production of superelastic medical implants and tools as well as thermomechanical elements in aerospace technology. The combination of these materials used as the elements of hybrid structures or composites can allow the creation of products with a unique set of properties such as high mechanical properties, superelasticity and damping capacity, increased wear resistance, and thermal shape memory. The basic properties of alloys based on titanium nickelide and the most widely used titanium alloy VT6 (Ti–6Al–4V) are analyzed. It is found that the functional properties of nitinol combined with structural properties of titanium alloys in an integrated structure make it possible to make a variety of products, especially for aerospace and medical industries. The possibilities to make high-strength permanent joints of titanium alloys with nitinol are analyzed. Various methods of welding (generally laser and diffusion welding) and soldering are currently investigated in order to produce such structures, and best prospects are associated with the use of intermediate layers that eliminate brittle intermetallic phase formation in the permanent joints.
Keywords
About the Author
K. S. SenkevichRussian Federation
Cand. Sci. (Tech.), engineer of the Departament of material science and heat treatment materials.
125993, Moscow, Volokolamskoe highway, 4
References
1. Wei Z.G., Tang C.Y., Lee W.B. Design and fabrication of intelligent composites based on shape memory alloys. J. Mater. Process. Tech. 1997. Vol. 69 (1—3). P. 68—74.
2. Neuking K., Abu-Zarifa A., Youcheu-Kemtchou S., Eggeler G. Polymer/NiTi-composites: Fundamental aspects, processing and properties. Adv. Eng. Mater. 2005. Vol. 7. Iss. 11. P. 1014—1023.
3. Belyaev S.P., Rubanik V.V., Resnina N.N., Rubanik Jr. V.V., Rubanik O.E. Effect of annealing on martensitic transformations in «steel — TiNi alloy» explosion welded bimetallic composite. Metal Sci. Heat Treat. 2011. Vol. 52. Iss. 9. P. 432—436.
4. Kothalkar A.D., Benitez R., Hu L., Radovic M., Karaman I. Thermo-mechanical response and damping behavior of shape memory alloy-MAX phase composites. Metall. Mater. Trans. A. 2014. Vol. 45. Iss. 5. P. 2646—2658.
5. Otsuka K., Ren X. Physical metallurgy of Ti—Ni-based shape memory alloys. Progr. Mater. Sci. 2005. Vol. 50. P. 511—678.
6. Kolachev B.A., Eliseev Yu.S., Bratukhin A.G., Talalaev V.D. Titanovye splavy v konstruktsiyakh i proizvodstve aviadvigatelei i aviatsionno-kosmicheskoi tekhniki [Titanium alloys in the design and manufacture of aircraft engines and aerospace equipment]. Moscow: MAI, 2001.
7. Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Progr. Mater. Sci. 2009. Vol. 54. Iss. 3. P. 397—425.
8. Il’in A.A., Kolachev B.A., Pol’kin I.S. Titanovye splavy. Sostav, struktura, svoistva [Titanium alloys. The composition, structure, properties]. Moscow: VILS—MATI, 2009.
9. Kollerov M.Yu., Gusev D.E., Oreshko E.I., Burnaev A.V. Povyshenie kharakteristik rabotosposobnosti meditsinskikh implantatov iz splavov titana i nikelida titana metodom termicheskoi obrabotki [Improved performance characteristics of medical implants made of titanium alloys and NiTi by heat treatment]. Tekhnologiya legkikh splavov. 2013. No. 3. P. 40—46.
10. Muslov S.A., Andreev V.A., Bondarev A.B., Sukhochev P.Yu. Sverkhelastichnye splavy s effektom pamyati formy v nauke, tekhnike i meditsine [Superelasticity alloys with shape memory effect in science, technology and medicine]. Moscow: Folium, 2010.
11. Gigliotti M.F.X., Hardwicke Jr.C.U., Jiang L., Short J.W., Lipkin D.M., Blank J.P., Anand K. Erosion and wear resistant protective structures for turbine engine components: Pat. 7300708 (USA). 2007.
12. Cai C., Song B., Wei O., Xue P., Wen S., Liu J., Shi Y. In-situ integrated fabrication of Ti—Ni coating during hot isostatic pressing of Ti6Al4V parts: Microstructure and tribological behavior. Surf. Coat. Tech. 2015. Vol. 280. P. 194—200.
13. Reichman S.H. Light weight armor with repeat hit and high energy absorption capabilities: Pat. 20030159575 (USA). 2006.
14. Levchenko S.K., Dreval’ O.N., Il’in A.A., Kollerov M.Yu., Rynkov I.P., Baskov A.V., Karimov A.A. Klinicheskie issledovaniya funktsional’noi transpedikulyarnoi stabilizatsii pozvonochnika [Clinical studies of transpedicular system using TiNi rod with functionally optimal rigidity]. Voprosy neirokhirurgii. 2009. No. 4. P. 31—36.
15. Filip P., Musialek J., Michalek K., Yen M., Mazanec K. TiAlV/Al2O3/TiNi shape memory alloy smart composite biomaterials for orthopedic surgery. Mater. Sci. Eng. A. 1999. Vol. 273—275. P. 769—774.
16. Chau E.T.F., Friend C.M., Allen D.M., Hora J., Webster J.R. A technical and economic appraisal of shape memory alloys for aerospace applications. Mater. Sci. Eng. A. 2006. Vol. 438—440. P. 589—592.
17. Chau E.T.F. Comparative study of joining methods for a SMART aerospace application: Eng. doctorate thesis. Cranfield University, 2007.
18. Zoeram A.S., Akbari Mousavi S.A.A. Laser welding of Ti—6Al—4V to nitinol. Mater. Design. 2014. Vol. 61. P. 185—190.
19. Shiue R.K., Wu Shyi-Kaan. Infrared brazing Ti50Ni50 and Ti—6Al—4V using the BAg-8 Braze alloy. Mater. Trans. 2005. Vol. 46. No. 9. P. 2057—2066.
20. Senkevich K.S., Knyazev M.I., Runova Yu.E., Shlyapin S.D. Special features of formation of a TiNi—VT6 diffusion joint. Metal Sci. Heat Treat. 2013. Vol. 55. Iss. 7. P. 419—422.
21. Ivanovna A.K., Hirata V.M.L., Lopez E.O. Figueroa R.R., Miramontes J.R. Microstructural and mechanical characterization of nitinol GTAW and FB welds of titanium. Mater. Sci. Forum. 2006. Vol. 509. P. 165—170.
22. Mukhametrakhimov M.Kh. Tverdofaznoe soedinenie titanovogo splava VT6 cherez nanostrukturirovannuyu prosloiku iz splava TiNi. In: Sbornik materialov V Mezhdunarodnoi shkoly «Fizicheskoe materialovedenie» [Solidstate bonding of titanium alloy VT6 through nanostructured layer of TiNi alloy. In: The collection of materials of the VI International School «Physical material science» (26 Sept.—1 Oct. 2011)]. Tol’yatti: TGU, 2011. P. 128—131.
23. Lopatin N.V., Senkevich K.S., Kudryavtsev E.A., Vydumkina S.V. Vliyanie mikrostruktury titanovogo splava VT6 na svoistva svarnykh soedinenii, poluchennykh diffuzionnoi svarkoi [Effect of microstructure state of titanium alloy Ti—6Al—4V on properties of joints produced by diffusion bonding]. Titan. 2014. No. 1. P. 41—50.
24. Lopatin N., Senkevich K., Kudryavtsev E.A. Effect of microstructure state of titanium alloy Ti—6Al—4V on structure and mechanical properties of joints produced by diffusion bonding process. Mater. Sci. Forum. 2014. Vol. 783—786. P. 2659—2664.
25. Lutfullin R.Ya. Sverkhplastichnost’ i tverdofaznoe soedinenie nanostruktirovannykh materialov (Obzor). Chast’ II. Fizicheskaya model’ formirovaniya tverdofaznogo soedineniya v titanovom splave v usloviyakh nizkotemperaturnoi sverkhplastichnosti [Superplasticity and solid-phase bonding of nanostructured materials (Review). Part II. The model of the solid-phase joint formation in titanium alloy under conditions of low temperature superplasticity]. Pis’ma o materialakh. 2011. Vol. 1. Iss. 2. P. 88—91.
26. Kazakova N.F. Diffuzionnaya svarka materialov [Diffusion bonding of materials]. Moscow: Mashinostroenie, 1981.
27. Simões S., Viana F., Ramos A.S., Vieira M.T., Vieira M.F. Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers. J. Mater. Sci. 2013. Vol. 48. Iss. 21. P. 7718—7727.
28. Emadinia O., Simões S., Viana F.M., Vieira F., Cavaleiro A.J., Ramos A.S., Vieira M.T. Cold rolled versus sputtered Ni/Ti multilayers for reaction-assisted diffusion bonding. Weld World. 2016. Vol. 60. P. 337—344.
Review
For citations:
Senkevich K.S. PROSPECTS OF PRODUCTION AND APPLICATION OF TITANIUM ALLOY AND NITINOL HYBRID STRUCTURES AND COMPOSITES.OVERVIEW. Powder Metallurgy аnd Functional Coatings. 2017;(4):71-78. (In Russ.) https://doi.org/10.17073/1997-308X-2017-4-71-78