Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

OPTIMISATION OF AUTOMATIC DOSED MOULD FILLING WITH FERROMAGNETIC POWDERS

https://doi.org/10.17073/1997-308X-2018-1-11-17

Abstract

The effectiveness of the technique for automatic dosed mould filling with fine ferromagnetic powders without natural fluidity is experimentally proved in the paper. In order to obtain steady  powder fluidity, disperse medium in the hopper of the considered device is affected by variable 50 Hz gradient magnetic  field with vertical induction lines and higher gradient in the area of stimulated fluidity formation and constant magnetic field with  horizontal induction lines. At certain magnetic fields parameters, disperse medium passes to a dynamically steady  suspended state thus forming a magnetic fluidized bed, and powder  flows into a dispenser. The paper provides the results obtained in  experimental studies of constant magnetic field induction and  variable magnetic field gradient influence on the mass flowrate of  barium ferrite powders with an average particle size dav of 1 μm and strontium ferrite powders with dav = 1, 9 and 50 μm through a 2  mm hole. Presented experimental dependencies show that for dav =  1 μm barium and strontium ferrite powders the speeds of powder  transportation to the dispenser reach their maximum values at a  constant magnetic field induction of 15,7 mT and a variable  magnetic field induction gradient of 593 mT/m and are equal to 96,9 and 181,1 mg/s, respectively. According to experimental data, the  minimal relative mass error of dav = 1 μm strontium ferrite powder  flowed in the dispenser is observed at electromagnetic effect modes  providing maximal disperse material fluidity and equals to 2,1–2,3 %.

About the Authors

I. N. Egorov
Don State Technical University
Russian Federation

Cand. Sci. (Tech.), assistant professor, Department of physics, Don State Technical University

344010, Russia, Rostov-on-Don, Gagarin square, 1



S. I. Egorova
Don State Technical University
Russian Federation
Dr. Sci. (Tech.), professor, Department of physics, Don State Technical University


References

1. Jose Manuel Valverde Millan. Fluidization of fine powders: Cohesive versus dynamical aggregation. Netherlands: Springer Science and Business Media, 2012.

2. De Vicente J., Klingenberg D.J., Hidalgo-Alvarez R. Magnetorheological fluids: A review. Soft Matter. 2001. Vol. 7. No. 8. P. 3701—3710.

3. See H. Field dependence of the response of a magnetorheological suspension under steady shear flow and squeezing flow. Rheologica Acta. 2003. Vol. 42. No. 1. P. 86— 92.

4. Gadipelly Thirupathi, Rajender Singh. Magneto-viscosity of MnZn-ferrite ferrofluid. Phys. B: Condensed Matter. 2014. Vol. 448. P. 346—348. DOI: 10.1016/j.physb.2014.03.042.

5. Hristov J.Y. Rheology of magnetizable powders related to the mechanics of magnetically stabilized beds (gas-solid systems). In: Proc. 5th Europ. Rheology Conf. Eds. I. Emri, R. Cvelbar. Portoroz, Slovenia, 1998. P. 133—134.

6. Espin M.J., Quintanilla M.A.S., Valverde J.M. Effect of particle size polydispersity on the yield stress of magneto fluidized beds as depending on the magnetic field orientation. Chem. Eng. J. 2015. Vol. 277. P. 269—285. DOI: 10.1016/j.cej.2015.04.124.

7. Espin M.J., Valverde J.M., Quintanilla M.A.S. Stabilization of fluidized beds of particles magnetized by an external field: effects of particle size and field orientation. J. Fluid Mech. 2013. Vol. 732. P. 282—303. DOI: 10.1017/jfm.2013.403.

8. Egorov I.N., Egorova S.I., Vernigorov Yu.M. Sposob izmel’cheniya magnitnykh materialov i ustroistvo dlya ego osushchestvleniya [Method of magnetic materials milling and device for its implementation]: Pat. 2306180 (RF), 2007.

9. Chou T., Nishizawa G., Hatakeyama M., Ishizaka C. Method for compacting powder in magnetic field, and method for producing rare-earth sintered magnet: Pat. 7416613 (US). 2008.

10. Okumura S., Nakamura A. Method for manufacturing rare earth magnet and powder compacting apparatus: Pat. 2003/0209842 (US). 2003.

11. Fedorchenko I.M., Frantsevich I.N., Radomysel’skii I.D. et. al. Poroshkovaya metallurgiya. Materialy, tekhnologiya, svoistva, oblasti primeneniya: Spravochnik [Powder metallurgy. Materials, technology, properties, application fields: Handbook]. Kiev: Nauk. dumka, 1985.

12. Kouzov P.A. Osnovy analiza dispersnogo sostava promyshlennykh pylei i izmel’chennykh materialov [Basics of disperse compound analysis of industry dusts and milled materials]. Leningrad: Khimiya, 1987.

13. Im Doo Junga, Jang Min Parkb, Ji-Hun Yuc, Tae Gon Kangd, See Jo Kime, Seong Jin Parka. Particle size effect on the magneto-rheological behavior of powder injection molding feedstock. Mater. Charact. 2014. Vol. 94. P. 19—25. DOI: 10.1016/j.matchar.2014.05.004.

14. Sagava M. Development and prospect of the Nd—Fe—B sintered magnets. In: Proc. 21st Int. Workshop on REPM and their Applications (Bled, Slovenia, 2010). P. 183—410.

15. Popov A.G., Shitov A.V., Gerasimov E.G., Vasilenko D.Yu., Govorkov M.Yu., Bratushev D.Yu., Vyatkin V.P., Shunyaev K.Yu., Mikhailova T.L. Preparation of sintered Nd— Fe—B magnets by pressless process. Phys. Met. Metallogr. 2012. Vol. 113. No. 4. P. 331—340.

16. Andrianov E.I. Metody opredeleniya strukturno-mekhanicheskikh kharakteristik poroshkoobraznykh materialov [Methods of definition of structure-mechanical characteristics of powder materials]. Moscow: Khimiya, 1982.

17. Levin B.E., Tret’yakov Yu.D., Letyuk L.M. Fiziko-khimicheskie osnovy polucheniya, svoistva i primenenie ferritov [Physical and chemical basics of production, properties and application of ferrites]. Moscow: Metallurgiya, 1979.

18. Tyshkovskii B.S., Blokhin G.V. Bunker dlya podachi poroshkovoi shikhty [Powder charge feeding hopper]: Certificate of authorship 1177053 (SU). 1985.

19. Mashek A.U., Khodkin V.M., Seutin V.I. Ustroistvo dlya dozirovaniya poroshka [Powder dozing device]: Certificate of authorship 935212 (SU).1982.

20. Bitkina N.S., Vernigorov Yu.M., Egorova S.I., Lemeshko G.F. Ustroistvo dlya zapolneniya press-form magnitozhestkim materialom [Device for press mould filling with magneto hard material]: Certificate of authorship 1801784 (RF). 1993.

21. Yumatov A.I., Gladkov G.I., Tikhonov V.S. Ustroistvo dlya pressovaniya poroshkov ferrita bariya [Device for pressing barium ferrite powders]: Certificate of authorship 535142 (SU). 1976.

22. Egorov I.N., Egorova S.I., Cherny A.I. Sposob zapolneniya press-form tonkodispersnymi poroshkami magnitozhestkikh materialov i ustroistvo dlya ego osushchestvleniya [Method of press mould filling with fine powders of magneto hard materials and device for its implementation]: Рat. 022640 (ЕА). 2016.

23. Egorov I.N., Egorova S.I. Effect of electromagnetic action on dispersed composition on milling ferromagnetic materials in a hammer mill. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 4. P. 371—374.


Review

For citations:


Egorov I.N., Egorova S.I. OPTIMISATION OF AUTOMATIC DOSED MOULD FILLING WITH FERROMAGNETIC POWDERS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(1):11-17. (In Russ.) https://doi.org/10.17073/1997-308X-2018-1-11-17

Views: 821


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)