Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

SYNTHESIS AND PROPERTIES OF COMPOSITES BASED ON ZIRCONIUM AND CHROMIUM BORIDES

https://doi.org/10.17073/1997-308X-2018-1-18-25

Abstract

This paper provides experimental data on ZrB2–CrB composite production by SHS compaction. Thermodynamic data were used to  calculate adiabatic flame temperatures of the Zr–Cr–B system and  compositions of equilibrium synthesis products and to determine optimum conditions for SHS composite production. It was  shown that equilibrium products of combustion synthesis are ZrB2  and CrB refractory compounds that ensure high thermodynamic  stability of SHS composites. They are used as a dispersed phase  (ZrB2) and a ceramic binder (CrB). As the binder content increases  from 25 to 64 wt.%, the adiabatic combustion temperature decreases from 3320 to 2350 K. A solid dispersed  phase (ZrB2) and a molten binder (CrB) are formed at these  conditions. It was identified that SHS composites with a residual  porosity less than 1% can be produced due to molten binder  formation. The effect of reaction mixture composition on the phase  composition, microstructure, physical and mechanical properties of  SHS composites was studied. It was found that the residual porosity  of SHS composites is ~1 % at the 30–50 wt.% CrB content. Vickers  hardness is 31,3 to 42,6 GPa, and flexural strength is 480 to 610  MPa. It was shown that physical and mechanical properties depend  on the residual porosity of SHS composites. The obtained ZrB2– 30CrB SHS composite was used to make cutting inserts and conduct  tests for high-strength hardened steel machining. The test results  proved that ZrB2–30CrB ceramic inserts feature high wear resistance when machining ShKh15 chromium bearing steel with a hardness of 61–65 HRC.

About the Authors

V. A. Shcherbakov
Institute of Structural Macrokinetics and Problems of Materials Science n.a. A.G. Merzhanov of the Russian Academy of Sciences (ISMAN)
Russian Federation

Dr. Sci. (Phys.-Math.), head of the Laboratory of energy stimulation of physical and chemical processes,
Institute of Structural Macrokinetics and Problems of Materials Science n.a. A.G. Merzhanov of the Russian Academy of Sciences (ISMAN)

142432, Russia, Moscow region, Chernogolovka, Academician Osipyan str., 8



A. N. Gryadunov
Institute of Structural Macrokinetics and Problems of Materials Science n.a. A.G. Merzhanov of the Russian Academy of Sciences (ISMAN)
Russian Federation

Cand. Sci. (Phys.-Math.), researcher of the Laboratory of energy stimulation of physical and chemical processes, ISMAN



Yu. N. Barinov
Institute of Structural Macrokinetics and Problems of Materials Science n.a. A.G. Merzhanov of the Russian Academy of Sciences (ISMAN)
Russian Federation
Cand. Sci. (Chem.), head of the Laboratory of chemical analysis, ISMAN


O. I. Botvina
National University of Science and Technology «MISIS»
Russian Federation

postgraduate student of the Department of functional nanosystems and high-temperature materials of the National University of Science and Technology «MISIS»

119049, Russia, Moscow, Leninskii pr., 4



References

1. Monteverde F., Bellosi A., Guicciardi S. Processing and properties of zirconium diboride- based composites. J. Eur. Ceram. Soc. 2002. Vol. 22. Iss. 3. Р. 279—288. DOI: http://dx.doi.org/10.1016/S0955-2219(01)00284-9.

2. Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Ellerby D.T. High strength zirconium diboride-based ceramics. J. Am. Ceram. Soc. 2004. Vol. 87. Iss. 6. Р. 1170—1172. DOI: http://dx.doi.org/10.1111/j.1551-2916.2004.01170.x.

3. Monteverde F., Guicciardi S., Bellosi A. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater. Sci. Eng. A. 2003. Vol. 346. Iss. 1—2. Р. 310—319. DOI: http://dx.doi.org/10.1016/S0921-5093(02)00520-8.

4. Rapp B. Materials for extreme environments. Mater. Today. 2006. Vol. 9. Iss. 5. P. 6. DOI: http://dx.doi.org/10.1016/S1369-7021(06)71471-7.

5. Fahrenholtz W.G., Hilmas G.E., Talmy I.G., Zaykoski J.A. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 2007. Vol. 90. Iss. 5. Р. 1347—1364. DOI: http://dx.doi.org/10.1111/j.1551-2916.2007.01583.x.

6. Murthy T.S.R.Ch., Sonber J.K., Subramanian C., Fotedar R.K., Gonal M.R., Suri A.K. Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2. Int. J. Refr. Met. Hard Mat. 2009. Vol. 27. Iss. 6. Р. 976 — 984. DOI: http://dx.doi.org/10.1016/j.ijrmhm.2009.06.004.

7. Thompson M.J., Fahrenholtz W.G., Hilmas G.E. Elevated temperature thermal properties of ZrB2 with carbon additions. J. Am. Ceram. Soc. 2012. Vol. 95. Iss. 3. Р. 1077—1085. DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.05034.x.

8. Zimmermann J.W., Hilmas G.E., Fahrenholtz W.G., Dinwiddie R.B., Porter W.D., Wang H. Thermophysical properties of ZrB2 and ZrB2—SiC ceramics. J. Am. Ceram. Soc. 2008. Vol. 91. Iss. 5. Р. 1405—1411. DOI: http://dx.doi.org/10.1111/j.1551-2916.2008.02268.x.

9. Lonergan J.M., Fahrenholtz W.G., Hilmas G.E. Zirconium diboride with high thermal conductivity. J. Am. Ceram. Soc. 2014. Vol. 97. Iss. 6. Р. 1689—1691. DOI: http://dx.doi.org/10.1111/jace.12950.

10. McClane D.L., Fahrenholtz W.G., Hilmas G.E. Thermal properties of (Zr,TM)B2 solid solutions with TM = Hf, Nb, W, Ti, and Y. J. Am. Ceram. Soc. 2014. Vol. 97. Iss. 5. Р. 1552—1558. DOI: http://dx.doi.org/10.1111/jace.12893.

11. Springer handbook of condensed matter and materials data. Eds. W. Martienssen, H. Warlimont. Berlin: Springer Heidelberg, 2005. 3.2. Ceramics. Р. 456—458. DOI: http://dx.doi.org/10.1007/3-540-30437-1.

12. Han L., Wang S., Zhu J., Han S., Li W., Chen B., Wang X., Yu X., Liu B., Zhang R., Long Y., Cheng J., Zhang J., Zhao Y., Jin C. Hardness, elastic, and electronic properties of chromium monoboride. Appl. Phys. Let. 2016. Vol. 106. Iss. 22. Р. 1—4. DOI: http://dx.doi.org/10.1063/1.4922147.

13. Deng H.L., Li G.L., Song Y.J., Xiao S.R. Microstructure and abrasion resistance mechanism of CrB particles reinforced MMC coating. Key Eng. Mat. 2008. Vol. 373—374. Р. 35—38. DOI: http://dx.doi.org/10.4028/www.scientific.net/KEM.373-374.35.

14. Jordan L.R., Betts A.J., Dahm K.L., Dearnley P.A., Wright G.A. Corrosion and passivation mechanism of chromium diboride coatings on stainless steel. Corros. Sci. 2005. Vol. 47. Iss. 5. Р. 1085—1096. DOI: http://dx.doi.org/10.1016/j.corsci.2003.10.018.

15. Самсонов Г.В., Серебрякова Т.И., Неронов В.А. Бориды. М.: Атомиздат, 1975; Samsonov G.V., Serebryakova T.I., Neronov V.A. Boridy [Borides]. Moscow: Atomizdat, 1975.

16. Щербаков В.А., Грядунов А.Н., Сачкова Н.В., Самохин А.В. СВС-компактирование керамических композитов на основе боридов титана и хрома. Письма о материалах. 2015. Т. 5. No. 1. C. 20—23; Shcherbakov V.A., Gryadunov A.N., Sachkova N.V., Samokhin A.V. SVSkompaktirovanie keramicheskikh kompozitov na osnove boridov titana i khroma [SHS- compaction of ceramic composites based on titanium and chrome borides]. Pis’ma o materialakh. 2015. Vol. 5. No. 1. P. 20—23. DOI: http://dx.doi.org/10.22226/2410-3535-2015-1-20-23.

17. Питюлин А.Н. Силовое компактирование в СВС процессах. В кн. Самораспространяющийся высокотемпературный синтез: теория и практика. Черно- головка: Территория, 2001. С. 333—353; Pityulin A.N. Silovoe kompaktirovanie v SVS protsessakh. In: Samorasprostranyayuchshiisya vysokotemperaturnyi sintez: teoriya i praktika [Power compaction in SHS processes. In: Self-propagating high-temperature synthesis: theory and practice]. Chernogolovka: Territoriya, 2001. P. 333—353.

18. Scherbakov V.A., Gryadunov A.N., Alymov M.I. Synthesis and characteristics of B4C—TiB2 composite. Adv. Mater. Technol. 2016. Iss. 4. Р. 16—21. DOI: http://dx.doi.org/10.17277/amt.2016.04.pp.016-021.

19. ГОСТ Р ИСО 6507-1 2007. Металлы и сплавы. Измерение твердости по Виккерсу; GOST R ISO 6507-1 2007. Metally i splavy. Izmerenie tverdosti po Vikkersu [Metals and alloys. Measurement of Vickers hardness].

20. ГОСТ 25281-82. Металлургия порошковая. Метод определения плотности формовок (с изменением No. 1); GOST 25281-82. Metallurgiya poroshkovaya. Metod opredeleniya plotnosti formovok [Powder metallurgy. Method for determining the density of molds].

21. Shiryaev A.A. Thermodynamic of SHS: Modern approach. Int. J. SHS. 1995. Vol. 4. Iss. 4. Р. 351—362.

22. Mamyan S.S., Shiryaev A.A., Merzhanov A.G. Thermodynamic studies of the possibility of forming inorganic materials by SHS with a reduction stage. J. Eng. Phys. Thermophys. 1993. Vol. 65. Iss. 4. Р. 974—980. DOI: http://dx.doi.org/10.1007/BF00862769.

23. Кипарисов С.С., Либенсон Г.А. Порошковая металлургия. М.: Металлургия, 1980; Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgiya [Powder metallurgy]. Moscow.: Metallurgiya, 1980.

24. ГОСТ 801-78. Сталь подшипниковая. Технические условия; GOST 801-78. Stal’ podshipnikovaya. Tekhnicheskie usloviya [Bearing steel. Technical conditions].


Review

For citations:


Shcherbakov V.A., Gryadunov A.N., Barinov Yu.N., Botvina O.I. SYNTHESIS AND PROPERTIES OF COMPOSITES BASED ON ZIRCONIUM AND CHROMIUM BORIDES. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(1):18-25. (In Russ.) https://doi.org/10.17073/1997-308X-2018-1-18-25

Views: 1183


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)