INVESTIGATION OF SURFACE STRUCTURE, CRYSTALLOGRAPHIC TEXTURE, MICROTOPOGRAPHY OF FUNCTIONAL COATINGS DEPOSITED USING FLEXIBLE TOOL AND SOME APPLICATIONS. PART 2. INVESTIGATION OF THE EFFECT OF FUNCTIONAL COATINGS APPLIED USING FLEXIBLE TOOL ON SOME PROPERTIES OF MATERIALS AND APPLICATIONS
https://doi.org/10.17073/1997-308X-2018-1-36-43
Abstract
Friction cladding as one of the simplest methods of surface modification with simultaneous coating application was used for surface nanostructuring. Intensive plastic deformation using a rotating wire brush (RWB) was performed during friction cladding. Brush fibers had an impulse-friction effect on the work surface with simultaneous coating application. Normalized steel samples (diameter 45 mm, width 10 mm) made of Grade 45 steel were tested for wear resistance. A copper-containing coating was applied at a circular grinder. Samples treated by various operating modes were tested at the SMC-2 friction machine using a disk-to-disk friction drive scheme. The tests showed that samples with a copper coating (C1) and a brass coating (B63) feature 2–10 times higher wear resistance in comparison than reference ones depending on the treatment mode. Samples with a brass coating (coating thickness 10–15 μm) applied in 6 passes with 2 mm interference (RWB feed on the work piece) at a sliding speed of 25 m/s demonstrated the highest strength. Smooth specimens (four series, a total of 60 pieces) made of 20CN steel were tested according to GOST 25502-82 «Fatigue Test Methods» to study the effect of friction cladding modes on endurance. Test results showed that the most effective way is surface plastic deformation with brass coating application. The endurance limit increase factor was Kυ = 1,41. It was found that steel mechanical properties (σв, σт, δ10) are not affected by coating application using friction cladding. Copper coating applied on coupling rods and plungers in hydraulic systems ensured 1,4–3,0 times longer service life, and up to 6 times longer life when applied on wave gear teeth in edge version.
About the Authors
I. V. BelevskayaRussian Federation
postgraduate student of the Department «Design and exploitation of metallurgical of machinery and equipment» of the Magnitogorsk State Technical University (MSTU) n.a. G.I. Nosov
455000, Russia, Magnitogorsk, Lenina av., 38
L. S. Belevskii
Russian Federation
Dr. Sci. (Tech.), professor of the Department «Design and exploitation of metallurgical of machinery and equipment» of MSTU
E. V. Gubarev
Russian Federation
assistant of the Department of physics of MSTU
Yu. Yu. Efimova
Russian Federation
Cand. Sci. (Tech.), associate prof. of the Department «Material processing technologies» of MSTU
References
1. Valiev R.Z., Aleksandrov I.V. Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei [Nanostructured materials obtained by severe plastic deformation.]. Moscow: Logos, 2000.
2. Ivanisenko Yu., Winderlich R.K., Valiev R.Z., Fecht H.-J. Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation. Scr. Mater. 2003. Vol. 49. Р. 947—952.
3. Zhou L., Liu G., Han Z., Lu K. Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scr. Mater. 2008. Vol. 58. P. 445—448.
4. Stolyarov V.V. Ob”emnoe i poverkhnostnoe nanostrukturirovanie titanovykh splavov [Surface and surface nanostructuring of titanium alloys]. Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov. 2014. No. 6. Р. 379—389.
5. Birringer R., Gleiter Н. Nanocrystalline materials. In: Encyclopedia of materials science and engineering. Ed. R.W. Cahn. Oxford: Pergamon Press, 1998. Vol. l (Suppl.). P. 339—349.
6. Baranov Yu.V. Influence of surface layer conditions on metals plasticity and strength. In: Dependability and quality management: Proc. of 10th Intern. conf. ICDQM-2007 (Belgrade, Serbia, 13—14 June 2007). 2007. P. 55—59.
7. Makarov A.V., Pozdeeva N.A., Malygina I.Yu. Povyshenie mikrotverdosti i teplostoikosti nizkouglerodistykh splavov zheleza pri nanostrukturirovanii poverkhnosti friktsionnoi obrabotkoi [Increasing the micro-hardness and heat resistance of low carbon iron alloys when nanostructuring of surface by friction processing]. Deformatsiya i razrushenie materialov. 2010. No. 5. Р. 32—35.
8. Makarov A.V., Savrai R.A., Gorkunov E.S., Yurovskikh A.S., Malygina I.Yu., Davydova N.A. Structure, mechanical characteristics, and deformation and fractures of quenched structural steel under static and cyclic loading after combined strain- heat nanostructuring treatment. Phys. Mesomech. 2015. Vol. 18. No. 1. P. 43—57.
9. Kuznetsov V.P., Makarov A.V., Psakhie S.G., Savrai R.A., Malygina I.Yu., Davydova N.A. Tribological aspects in nanostructuring burnishing of structural steels. Phys. Mesomech. 2014. Vol. 17. No. 4. Р. 250—264.
10. Makarov A.V., Pozdeeva N.A., Savrai R.A., Yurovskikh A.S., Malygina I.Yu. Improvement of wear resistance of hardened structural steel by nanostructuring frictional treatment. J. Frict. Wear. 2012. Vol. 33. No. 6. Р. 433—442.
11. Makarov A.V., Savrai R.A., Pozdejeva N.A., Smirnov S.V., Vichuzhanin D.I., Malygina I., Korshunov L.G. Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension. Surf. Coat. Technol. 2010. Vol. 205. No. 3. P. 841—852.
12. Wang Z.B., Tao N.R., Li S., Wang W., Liu G., Lu J., Lu K. Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater. Sci. Eng. A. 2003. Vol. 352. No. 1—2. Р. 144—149.
13. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A. 2004. Vol. 375—377. Р. 38—45.
14. Ba D.M., Ma S.N., Meng F.J., Li C.Q. Friction and wear behaviors of nanocrystalline surface layer of chrome-silicon alloy steel. Surf. Coat. Technol. 2007. Vol. 202. Р. 254— 260.
15. Xu Y.H., Peng J.H., Fang L. Nano-crystallization of steel wire and its wear behavior. Mater. Sci. Eng. A. 2008. Vol. 483—484. Р. 688—691.
16. Golubchik E., Polyakova M., Gulin A. Adaptive approach to quality management in combined methods of material processing. Appl. Mech. Mater. 2014. Vol. 656. Р. 497—506.
17. Belevskii L.S., Belevskaya I.V., Efimova Yu.Yu. Friktsionnaya nanostrukturiruyushchaya obrabotka metallicheskikh poverkhnostei i nanesenie funktsional’nykh pokrytii gibkim instrumentom [Friction nanostructuring treatment of metallik surfaces and deposition of functional coatings using a elexible tool]. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2014. No. 1. Р. 70—76.
18. Belevskii L.S. Povyshenie nadezhnosti mashin i materialov naneseniem pokrytii mekhanicheskim sposobom [Increasing the reliability of the machines and materials by applying coatings mechanical method]. Mashinovedenie. 1989. No. 3. Р. 39—41.
19. Belevskii L.S., Antsupov V.P., Dosmanov V.A. Povyshenie iznosostoikosti naneseniem med’soderzhashchikh pokrytii provolochnymi shchetkami [Increasing wear resistance by applying of copper-containing coatings by wire brushes]. Trenie i iznos. 1989. Vol. 10. No. 1. Р. 119—123.
20. Antsupov V.P., Belevskii L.S., Dosmanov V.A. Umen’shenie iznashivaemosti zakalennykh detalei metallizatsiei poverkhnosti provolochnymi shchetkami [The reduction of wear of hardened parts by metallization of surface by wire brushes]. Trenie i iznos. 1991. Vol. 12. No. 2. Р. 365—368
21. Kostikov V.I., Agureev L.E., Eremeeva Zh.V. Razrabotka uprochnennykh nanochastitsami alyumokompozitov dlya raketno-kosmicheskoi tekhniki [Development of aluminium composites strengthened by nanoparticles for rocket and space technology]. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2014. No. 1. Р. 35—38.
22. Popov V.A., Zaitsev V.A., Belevskiy L.S., Tulupov S.A., Matveyev D.V., Khodos I.I., Kovalchuk M.N. Investigations into the structure of nanocomposite materials and coatings on their basis applied by friction cladding. Inorg. Mater. Appl. Res. 2011. Vol. 2. No. 1. Р. 57—64.
Review
For citations:
Belevskaya I.V., Belevskii L.S., Gubarev E.V., Efimova Yu.Yu. INVESTIGATION OF SURFACE STRUCTURE, CRYSTALLOGRAPHIC TEXTURE, MICROTOPOGRAPHY OF FUNCTIONAL COATINGS DEPOSITED USING FLEXIBLE TOOL AND SOME APPLICATIONS. PART 2. INVESTIGATION OF THE EFFECT OF FUNCTIONAL COATINGS APPLIED USING FLEXIBLE TOOL ON SOME PROPERTIES OF MATERIALS AND APPLICATIONS. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(1):36-43. (In Russ.) https://doi.org/10.17073/1997-308X-2018-1-36-43