Preview

Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya)

Advanced search

STUDYING STABILITY PROPERTIES OF PROTECTIVE COATINGS FORMED BY MICROARC OXIDATION FOR WORKPIECE GROUP PROCESSING

https://doi.org/10.17073/1997-308X-2018-1-44-50

Abstract

The paper studies performance reproduction stability for protective coatings formed by microarc oxidation (MAO) when processing the  group of workpieces. Ceramic-like MAO coatings exhibit high  resistance to wear, corrosion, shock temperature impact while featuring high adhesive strength. At the same time, an  essential indicator of any technological process is the stability of its  results. In general, most research findings published in the MAO field disregard the analysis of stability of obtained results and fail to study the effect that technological factors have on this parameter. This  paper is the first one that provides experimental reproduction  stability estimates for the key characteristics (thickness, through  porosity and microhardness) of MAO coatings formed while  processing  the group of workpieces and for electrolyte exhaustion  effect on the values of these characteristics. The studies allow for a  conclusion that the stability of these MAO coating indicators depends  largely on electrolyte exhaustion and the time of microarc  oxidation process. It is noted that values of these characteristics can  significantly differ for coatings formed simultaneously on workpieces in the same group, and the stability of coating characteristics  (thickness, through porosity and microhardness) increases with an increase in MAO processing time. The results also prove the  assumption about changes in the characteristics of coatings formed when processing the group of workpieces are due to unevenly  distributed electric current density between these workpieces and resulting unequal electricity amount flowed in the galvanic circuit,  that determines the formation of the coating substrate.

About the Authors

V. B. Lyudin
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation

Dr. Sci. (Tech.), prof. of the Department of technology of production devices and information control systems of aircraft (TPD&ICSA), Moscow Aviation Institute (National Research University) (MAI (NRU))

109383, Russia, Moscow, Polbina str., 45



A. V. Apelfeld
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation
Dr. Sci. (Tech.), prof. of the Department of TPD&ICSA, MAI (NRU)


B. L. Krit
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation
Dr. Sci. (Tech.), prof. of the Department of TPD&ICSA, MAI (NRU)


I. D. Fedichkin
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation
postgraduate student of the Department of TPD&ICSA, MAI (NRU)


V. V. Melikhov
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation
postgraduate student of the Department of TPD&ICSA, MAI (NRU)


D. B. Chudinov
Moscow Aviation Institute (National Research University) (MAI (NRU))
Russian Federation
postgraduate student of the Department of TPD&ICSA, MAI (NRU)


References

1. Эпельфельд А.В., Белкин П.Н., Борисов А.М., Васин В.А., Крит Б.Л., Людин В.Б., Сомов О.В., Сорокин, В.А. Суминов И.В., Францкевич В.П. Современные технологии модификации поверхности материалов и нанесения защитных покрытий: в 3-х т. Т. I: Микродуговое оксидирование. М.; СПб.: Реноме, 2017; Apelfeld A.V., Belkin P.N., Borisov A.M., Vasin V.A., Krit B.L., Lyudin V.B., Somov O.V., Sorokin V.A., Suminov I.V., Frantskevich V.P. Sovremennye tekhnologii modifikatsii poverkhnosti materialov i naneseniya zashchitnykh pokrytii. Vol. I: Mikrodugovoe oksidirovanie [Modern technologies for surface modification of materials and plating of protective coatings. Vol. I: Microarc oxidation]. Moscow; St. Petersburg: Renome, 2017.

2. Arrabal R., Matykina E., Hashimoto T., Skeldon P., Thompson G.E. Characterization of AC PEO coatings on magnesium alloys. Surf. Coat. Technol. 2009. Vol. 203. P. 2207—2220.

3. Matykina E., Berkani A., Skeldon P., Thompson G. Realtime imaging of coating growth during plasma electrolytic oxidation of titanium. Electrochim. Acta. 2007. Vol. 53. P. 1987— 1994.

4. Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999. Vol. 122. P. 73—93.

5. Гордиенко П.С., Достовалов В.А., Ефименко А.В. Микродуговое оксидирование металлов и сплавов. Владивосток: Изд. дом Дальневост. федер. ун-та, 2013; Gordienko P.S., Dostovalov V.A., Efimenko A.V. Mikrodugovoe oksidirovanie metallov i splavov [Microarc oxidation of metals and alloys]. Vladivostok: Izdatel’- skii dom Dal’nevostochnogo federal’nogo universiteta, 2013.

6. Мамаев А.И., Мамаева В.А. Сильнотоковые микроплазменные процессы в растворах электролитов. Новосибирск: Изд-во СО РАН, 2005; Mamaev A.I., Mamaeva V.A. Sil’notokovye mikroplazmennye protsessy v rastvorakh elektrolitov [High current microplasma processes in electrolyte solutions]. Novosibirsk: Izdatel’stvo SO RAN, 2005.

7. Yerokhin A.L., Snizhko L.A., Gurevina N.L., Leyland A., Pilkington A., Matthews A. Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phys. D: Appl. Phys. 2003. Vol. 36. P. 2110—2120.

8. Klapkiv M.D., Nikiforchin G.M., Posuvailo V.M. Spectral analysis of electrolytic plasma during oxides synthesis on aluminum. J. Mater. Sci. 1995. Vol. 30. P. 333—343.

9. Yerokhin A.L., Snizhko L.O., Gurevina N.L., Leyland A., Pilkington A., Matthews A. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surf. Coat. Technol. 2004. Vol. 177—178. P. 779—783.

10. Dunleavy C.S., Golosnoy I.O., Curran J.A., Clyne T.W. Characterisation of discharge events during plasma electrolytic oxidation. Surf. Coat. Technol. 2009. Vol. 203. P. 3410—3419.

11. Curran J.A., Clyne T.W. Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surf. Coat. Technol. 2005. Vol. 199. P. 168—176.

12. Wu X., Xie F., Hu Z., Wang L. Effects of additives on corrosion and wear resistance of micro-arc oxidation coatings on TiAl alloy. Trans. Nonferr. Met. Soc. China. 2010. Vol. 20. P. 1032—1036.

13. Гнеденков С.В., Синебрюхов С.Л., Сергиенко В.И. Композиционные многофункциональные покрытия на металлах и сплавах, формируемые плазменным электролитическим оксидированием. Владивосток: Дальнаука, 2013; Gnedenkov S.V., Sinebryukhov S.L., Sergienko V.I. Kompozitsionnye mnogofunktsional’nye pokrytiya na metallakh i splavakh, formiruemye plazmennym elektroliticheskim oksidirovaniem [Composite multi-functional coatings on metals and alloys formed by plasma electrolytic oxidation]. Vladivostok: Dal’nauka, 2013.

14. Парфенов Е.В., Невьянцева Р.Р., Горбатков С.А., Ерохин А.Л. Электролитно- плазменная обработка: моделирование, диагностика, управление. М.: Машиностроение, 2014; Parfenov E.V., Nev’yantseva R.R., Gorbatkov S.A., Erokhin A.L. Elektrolitno-plazmennaya obrabotka: modelirovanie, diagnostika, upravlenie [Electrolytic- plasma treatment: modeling, diagnosis, control]. Moscow: Mashinostroenie, 2014.

15. Snizhko L.O., Yerokhin A.L., Pilkington A., Gurevina N.L., Misnyankin D.O, Leyland A., Matthews A. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim. Acta. 2004. Vol. 49. P. 2085— 2095.

16. Aliofkhazraei M., Sabour Rouhaghdam A. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle. Appl. Surf. Sci. 2012. Vol. 258. P. 2093—2097.

17. Matykina E., Arrabal R., Skeldon P., Thompson G.E., Belenguer P. AC PEO of aluminium with porous alumina precursor films. Surf. Coat. Technol. 2010. Vol. 205. P. 1668—1678.

18. Yerokhin A.L., Shatrov A., Samsonov V., Shashkov P., Pilkington A., Leyland A., Matthews A. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surf. Coat. Technol. 2005. Vol. 199. P. 150—157.

19. Казанцев И.А., Кривенков А.О. Технология получения композиционных материалов микродуговым ок- сидированием. Пенза: Инф.-изд. центр ПГУ, 2007; Kazantsev I.A., Krivenkov A.O. Tekhnologiya polucheniya kompozitsionnykh materialov mikrodugovym oksidirovaniem [The technology of obtaining composite materials by microarc oxidation method]. Penza: Inf.-izd. tsentr PGU, 2007.

20. Дунькин О.Н., Людин В.Б., Суминов И.В., Шичков Л.П., Эпельфельд А.В. Система цифрового управления и мониторинга установок плазменно-электролитической обработки. Приборы. 2003. No. 4. С. 30—44, No. 5. С. 27—41, No. 6. С. 35—45; Dunkin O.N., Lyudin V.B., Suminov I.V., Shichkov L.P., Apelfeld A.V. Sistema tsifrovogo upravleniya i monitoringa ustanovok plazmenno-elektroliticheskoi obrabotki [Digital control and monitoring system for plasma electrolytic treatment equipment]. Pribory. 2003. No. 4. P. 30 —44, No. 5. P. 27—41, No. 6. P. 35—45.

21. Эпельфельд А.В. Методика измерения сквозной пористости диэлектрических покрытий, получаемых микродуговым оксидированием. В сб. Тр. 3-й Междунар. науч.- техн. конф. Ч. 2. М.: ГНУ ВИЭСХ, 2003. С. 325—329; Apelfeld A.V. Metodika izmereniya skvoznoi poristosti dielektricheskikh pokrytii, poluchaemykh mikrodugovym oksidirovaniem [Methods of measurement through porosity of dielectric coatings obtained by microarc oxidation method]. In: Trudy 3-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Trans. 3rd Intern. sci.-techn. conf.]. Pt. 2. Moscow: GNU VIESKh, 2003. Р. 325—329.

22. Mecuson F., Czerwiec T., Belmonte T., Dujardin L., Viola A., Henrion G. Diagnostics of an electrolytic microarc process for aluminium alloy oxidation. Surf. Coat. Technol. 2005. Vol. 200. P. 804—808.

23. Sundararajan G., Rama Krishna L. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf. Coat. Technol. 2003. Vol. 167. P. 269—273.

24. Curran J.A., Clyne T.W. Porosity in plasma electrolytic oxide coatings. Acta Mater. 2006. Vol. 54. P. 1985— 1993.


Review

For citations:


Lyudin V.B., Apelfeld A.V., Krit B.L., Fedichkin I.D., Melikhov V.V., Chudinov D.B. STUDYING STABILITY PROPERTIES OF PROTECTIVE COATINGS FORMED BY MICROARC OXIDATION FOR WORKPIECE GROUP PROCESSING. Powder Metallurgy аnd Functional Coatings (Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional'nye Pokrytiya). 2018;(1):44-50. (In Russ.) https://doi.org/10.17073/1997-308X-2018-1-44-50

Views: 1002


ISSN 1997-308X (Print)
ISSN 2412-8767 (Online)